Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 317: 115455, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751259

RESUMO

City clusters play an important role in air pollutant and greenhouse gas (GHG) emissions reduction in China, primarily due to their high fossil energy consumption levels. The "2 + 26" Cities, i.e., Beijing, Tianjin and 26 other perfectures in northern China, has experienced serious air pollution in recent years. We employ the Greenhouse Gas and Air Pollution Interactions and Synergies model adapted to the "2 + 26" Cities (GAINS-JJJ) to evaluate the impacts of structural adjustments in four major sectors, industry, energy, transport and land use, under the Three-Year Action Plan for Blue Skies (Three-Year Action Plan) on the emissions of both the major air pollutants and CO2 in the "2 + 26" Cities. The results indicate that the Three-Year Action Plan applied in the "2 + 26" Cities reduces the total emissions of primary fine particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), SO2, NOx, NH3 and CO2 by 17%, 25%, 21%, 3% and 1%, respectively, from 2017 to 2020. The emission reduction potentials vary widely across the 28 prefectures, which may be attributed to the differences in energy structure, industrial composition, and policy enforcement rate. Among the four sectors, adjustment of industrial structure attains the highest co-benefits of CO2 reduction and air pollution control due to its high CO2 reduction potential, while structural adjustments in energy and transport attain much lower co-benefits, despite their relatively high air pollutant emissions reductions, primarily resulting from an increase in the coal-electric load and associated carbon emissions caused by electric reform policies..


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Dióxido de Carbono/análise , China , Cidades , Mudança Climática , Monitoramento Ambiental/métodos , Gases de Efeito Estufa/análise , Material Particulado/análise
2.
Molecules ; 23(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649112

RESUMO

The removal of acetone and benzene series (BTEX) under individual and concurrent conditions is carried out in a coaxial nonthermal plasma (NTP) reactor. The results show that the benzene series has a significant negative impact on acetone conversion and CO2 selectivity under NTP treatment. Furthermore, it is found that p-xylene significantly promotes COx selectivity under co-treatment with acetone because of greater CO generation. Based on the results of transient FTIR, MS, and GC-MS, it is seen that quantities of formic acid, formaldehyde, and ring-opening byproducts from benzene series decomposition are reduced, while quantities of aromatic byproducts with carboxyl, phenolic, and aldehyde groups on the benzene ring increase under coexistence conditions. With the help of theoretical calculation and kinetic analysis, hydrogen abstraction from the methyl group and active hydroxyl radical consumption are proposed as critical factors in the BTEX inhibition effect on acetone degradation.


Assuntos
Acetona/isolamento & purificação , Derivados de Benzeno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Acetona/química , Derivados de Benzeno/química , Biodegradação Ambiental , Cinética , Estrutura Molecular , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA