RESUMO
Hybrid composite electrolytes incorporate polymer matrixes and garnet filler attract the focus of concern for all-solid-state batteries, which possess high ionic conductivity, superior electrochemical stability, and wide electrochemical window of ceramic electrolyte advantages, and exhibit excellent flexibility and tensile shear strength from polymer electrolyte benefits. Hence, the unique structure design of solid-state electrolytes resolves the existing defects that the use of either single garnet or polymer electrolytes implemented into battery devices. This review summarizes Li7 La3 Zr2 O12 (LLZO)/polymer solid composite electrolytes (SCEs), comprising LLZO/polymer SCEs with various structures and different ratios of LLZO fillers, LLZO/polymer with different kinds of polymers matrix and hybrid lithium-salt, and Li+ transport pathways within the LLZO/polymers SCEs interface. The purpose here is to propose the viewpoints and challenges of LLZO/polymer SCEs to promote the development of next-generation solid electrolytes.
RESUMO
The rapid development of miniaturized electronic devices has greatly stimulated the endless pursuit of high-performance on-chip micro-supercapacitors (MSCs) delivering both high energy and power densities. To this end, an advanced three-dimensional (3D) microelectrode architecture design offers enormous opportunities due to high mass loading of active materials, large specific surface areas, fast ion diffusion kinetics, and short electron transport pathways. In this review, we summarize the recent advances in the rational design of 3D architectured microelectrodes including 3D dense microelectrodes, 3D nanoporous microelectrodes, and 3D macroporous microelectrodes. Furthermore, the emergent microfabrication strategies are discussed in detail in terms of charge storage mechanisms and structure-performance correlation for on-chip MSCs. Finally, we conclude with a perspective on future opportunities and challenges in this thriving field.