Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 645: 86-95, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146382

RESUMO

Thiol functionalization of two-dimensional (2D) metal sulfides has been demonstrated as an effective approach to enhance the sensing performances. However, most thiol functionalization is realized by multiple-step approaches in liquid medium and depends on the dispersity of 2D materials. Here, we utilize a three-dimensional (3D) In2S3 nano-porous structure that self-assembled from 2D components as the nanoreactor, in which the surface-absorbed thiol molecules from the chemical residues of the nanoreactor are used for the in-situ covalent functionalization. Such functionalization is realized by facile heat the nanoreactor at 100 °C, leading to the recombing sulfur vacancies with thiol-terminated groups. The NO2 sensing performances of such functionalized nanoreactor are investigated at room temperature, in which In2S3-100 exhibits a response magnitude of 21.5 towards 10 ppm NO2 with full reversibility, high selectivity, and excellent repeatability. Such high-performance gas sensors can be attributed to the additional electrons that transferring from the functional group into the host, thus significantly modifying the electronic band structure. This work provides a guideline for the facile in-situ functionalization of metal sulfides and an efficient strategy for the high performances gas sensors without external stimulus.

2.
iScience ; 25(1): 103598, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005545

RESUMO

Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA