Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 80(7): 3504-11, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25742395

RESUMO

One-step, catalytic synthesis of N-arylsulfonamides via the construction of N-S bonds from the direct coupling of sodium arylsulfinates with nitroarenes was realized in the presence of FeCl2 and NaHSO3 under mild conditions. In this process, stable and readily available nitroarenes were used as nitrogen sources, and NaHSO3 acted as a reductant to provide N-arylsulfonamides in good to excellent yields. A broad range of functional groups were very well-tolerated in this reaction system. In addition, mechanistic studies indicated that the N-S bond might be generated through direct coupling of nitroarene with sodium arylsulfinate prior to the reduction of nitroarenes by NaHSO3. Accordingly, a reaction mechanism involving N-aryl-N-arenesulfonylhydroxylamine as an intermediate was proposed.


Assuntos
Ferro/química , Nitrocompostos/química , Nitrogênio/química , Sulfonamidas/síntese química , Catálise , Estrutura Molecular , Sulfonamidas/química
2.
Chem Sci ; 14(4): 903-915, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755704

RESUMO

The development of facile polymerizations toward functional heterocyclic polymers is of great significance for chemistry and materials science. As an important class of heterocyclic polymers, polyoxadiazoles (PODs) have found applications in various fields. However, the synthetic difficulties of PODs greatly restrict their structural diversity and property investigation. Herein, we report a series of catalyst-free multicomponent polymerizations (MCPs) that can facilely synthesize functional PODs with well-defined and diversified topological structures from commercially available or readily accessible aldehydes, carboxylic acids, secondary amines, and (N-isocyanimino)triphenylphosphorane at room temperature. Unlike conventional Ugi polycondensations, the present Ugi-type MCPs can in situ generate oxadiazole moieties in polymer backbones. The obtained PODs possess good solubility, high thermal and morphological stability, and excellent film-forming ability. The introduction of aggregation-induced emission (AIE) moieties together with the inherent structural features of PODs endow these polymers with multiple functionalities. The AIE-active linear PODs can form fluorescent microporous films with stable and ordered structures based on the simple breath figure patterning method, and the self-assembly morphologies can be directly visualized by fluorescence microscopy in a high-contrast and sensitive manner. Moreover, both the linear and hyperbranched AIE-active PODs possess excellent biocompatibility, good lysosome specificity, and excellent photobleaching resistance, which enable them to serve as promising lysosome-specific fluorescent probes in biological imaging.

3.
Micromachines (Basel) ; 14(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37241541

RESUMO

Miniaturized laser-initiated pyrotechnic devices have great application prospects in aerospace and modern weapon systems due to their excellent energy output performance and reliability. In order to develop a low-energy insensitive laser detonation technology based on a two-stage charge structure, it is important to deeply analyze the motion law of a titanium flyer plate driven by the deflagration of the first-stage charge (RDX). The effects of the charge mass of RDX, flyer plate mass, and barrel length on the motion law of flyer plates were studied through a numerical simulation method based on the Powder Burn deflagration model. The consistency between the numerical simulation and the experimental results was analyzed using the paired t confidence interval estimation method. The results show that the Powder Burn deflagration model can effectively describe the motion process of the RDX deflagration-driven flyer plate with a 90% confidence level, and its velocity error is ≤6.7%. The speed of the flyer plate is proportional to the mass of the RDX charge, inversely proportional to the mass of the flyer plate, and exponentially related to its moving distance. As the moving distance of the flyer plate increases, the RDX deflagration products and air in front of the flyer plate are compressed, which inhibits the motion of the flyer plate. In the optimum state (the mass of the RDX charge is 60 mg, the mass of the flyer is 85 mg, and the length of the barrel is 3 mm), the speed of the titanium flyer reaches 583 m/s, and the peak pressure of the RDX deflagration reaches 2182 MPa. This work will provide a theoretical basis for the refined design of a new generation of miniaturized high-performance laser-initiated pyrotechnic devices.

4.
Rev Sci Instrum ; 92(3): 033106, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820024

RESUMO

We present the design, fabrication, characterization, and optimization of a TPM (twin parallel microstrip)-based nuclear magnetic resonance (NMR) probe, produced by using a low-loss Teflon PTFE F4B high frequency circuit board. We use finite element analysis to optimize the radio frequency (RF) homogeneity and sensitivity of the TPM probe jointly for various sample volumes. The RF homogeneity of this TPM planar probe is superior to that of only a single microstrip probe. The optimized TPM probe properties such as RF homogeneity and field strength are characterized experimentally and discussed in detail. By combining this TPM based NMR probe with microfluidic technology, the sample amount required for kinetic study using NMR spectroscopy was minimized. This is important for studying costly samples. The TPM NMR probes provide high sensitivity to analysis of 5 µl samples with 2 mM concentrations within 10 min. The miniaturized microfluidic NMR probe plays an important role in realizing down to seconds timescale for kinetic monitoring.

5.
Nat Commun ; 11(1): 5793, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188186

RESUMO

Magnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA