Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Transl Med ; 22(1): 245, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448948

RESUMO

BACKGROUND: In diabetic retinopathy (DR), hypoxia-inducible factor (HIF-1α) induces oxidative stress by upregulating glycolysis. This process leads to neurodegeneration, particularly photoreceptor cell damage, which further contributes to retinal microvascular deterioration. Further, the regulation of Wnt-inhibitory factor 1 (WIF1), a secreted Wnt signaling antagonist, has not been fully characterized in neurodegenerative eye diseases. We aimed to explore the impact of WIF1 on photoreceptor function within the context of DR. METHOD: Twelve-week-old C57BL/KsJ-db/db mice were intravitreally injected with WIF1 overexpression lentivirus. After 4 weeks, optical coherence tomography (OCT), transmission electron microscopy (TEM), H&E staining, and electroretinography (ERG) were used to assess the retinal tissue and function. The potential mechanism of action of WIF1 in photoreceptor cells was explored using single-cell RNA sequencing. Under high-glucose conditions, 661 W cells were used as an in vitro DR model. WIF1-mediated signaling pathway components were assessed using quantitative real-time PCR, immunostaining, and western blotting. RESULT: Typical diabetic manifestations were observed in db/db mice. Notably, the expression of WIF1 was decreased at the mRNA and protein levels. These pathological manifestations and visual function improved after WIF1 overexpression in db/db mice. TEM demonstrated that WIF1 restored damaged mitochondria, the Golgi apparatus, and photoreceptor outer segments. Moreover, ERG indicated the recovery of a-wave potential amplitude. Single-cell RNA sequencing and in vitro experiments suggested that WIF1 overexpression prevented the expression of glycolytic enzymes and lactate production by inhibiting the canonical Wnt signaling pathway, HIF-1α, and Glut1, thereby reducing retinal and cellular reactive oxygen species levels and maintaining 661 W cell viability. CONCLUSIONS: WIF1 exerts an inhibitory effect on the Wnt/ß-catenin-HIF-1α-Glut1 glycolytic pathway, thereby alleviating oxidative stress levels and mitigating pathological structural characteristics in retinal photoreceptor cells. This mechanism helps preserve the function of photoreceptor cells in DR and indicates that WIF1 holds promise as a potential therapeutic candidate for DR and other neurodegenerative ocular disorders.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Transportador de Glucose Tipo 1 , Camundongos Endogâmicos C57BL , Células Fotorreceptoras , Retina
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385315

RESUMO

Sex and aging influence the human immune system, resulting in disparate responses to infection, autoimmunity, and cancer. However, the impact of sex and aging on the immune system is not yet fully elucidated. Using small conditional RNA sequencing, we found that females had a lower percentage of natural killer (NK) cells and a higher percentage of plasma cells in peripheral blood compared with males. Bioinformatics revealed that young females exhibited an overrepresentation of pathways that relate to T and B cell activation. Moreover, cell-cell communication analysis revealed evidence of increased activity of the BAFF/APRIL systems in females. Notably, aging increased the percentage of monocytes and reduced the percentage of naïve T cells in the blood and the number of differentially expressed genes between the sexes. Aged males expressed higher levels of inflammatory genes. Collectively, the results suggest that females have more plasma cells in the circulation and a stronger BAFF/APRIL system, which is consistent with a stronger adaptive immune response. In contrast, males have a higher percentage of NK cells in blood and a higher expression of certain proinflammatory genes. Overall, this work expands our knowledge of sex differences in the immune system in humans.


Assuntos
Envelhecimento/fisiologia , Análise de Célula Única , Adulto , Idoso , Comunicação Celular/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Imunossenescência , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Linfócitos T/metabolismo , Transcriptoma , Adulto Jovem
3.
New Phytol ; 237(6): 2224-2237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564967

RESUMO

Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Fatores de Transcrição , Proteínas de Plantas/genética
4.
J Immunol ; 207(3): 837-848, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282004

RESUMO

Dendritic cells (DCs) are critical for pathogen recognition and Ag processing/presentation. Human monocyte-derived DCs (moDCs) have been extensively used in experimental studies and DC-based immunotherapy approaches. However, the extent of human moDC and peripheral DCs heterogeneity and their interrelationship remain elusive. In this study, we performed single-cell RNA sequencing of human moDCs and blood DCs. We identified seven subtypes within moDCs: five corresponded to type 2 conventional DCs (cDC2s), and the other two were CLEC10A+CD127+ cells with no resemblance to any peripheral DC subpopulations characterized to date. Moreover, we defined five similar subtypes in human cDC2s, revealed the potential differentiation trajectory among them, and unveiled the transcriptomic differences between moDCs and cDC2s. We further studied the transcriptomic changes of each moDC subtype during maturation, demonstrating SLAMF7 and IL15RA as maturation markers and CLEC10A and SIGLEC10 as markers for immature DCs. These findings will enable more accurate functional/developmental analyses of human cDC2s and moDCs.


Assuntos
Células Dendríticas/fisiologia , Monócitos/fisiologia , Análise de Célula Única/métodos , Adulto , Diferenciação Celular/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lectinas/genética , Lectinas Tipo C/genética , Masculino , Receptores de Superfície Celular/genética , Receptores de Interleucina-15/genética , Análise de Sequência de RNA , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Células Th2/imunologia , Adulto Jovem
5.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L84-L98, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146564

RESUMO

Coronavirus disease 2019 (COVID-19), driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a global pandemic in March 2020. Pathogenic T cells and inflammatory monocytes are regarded as the central drivers of the cytokine storm associated with the severity of COVID-19. In this study, we explored the characteristic peripheral cellular profiles of patients with COVID-19 in both acute and convalescent phases by single-cell mass cytometry (CyTOF). Using a combination of algorithm-guided data analyses, we identified peripheral immune cell subsets in COVID-19 and revealed CD4+ T-cell depletion, T-cell differentiation, plasma cell expansion, and the reduced antigen presentation capacity of innate immunity. Notably, COVID-19 induces a dysregulation in the balance of monocyte populations by the expansion of the monocyte subsets. Collectively, our results represent a high-dimensional, single-cell profile of the peripheral immune response to SARS-CoV-2 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , COVID-19/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/citologia , Depleção Linfocítica , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Plasmócitos/citologia , Análise de Célula Única
6.
Plant Biotechnol J ; 19(7): 1412-1428, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539631

RESUMO

Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.


Assuntos
Artemisia annua , Artemisininas , Ácido Abscísico , Artemisia annua/genética , Artemisininas/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
New Phytol ; 231(5): 2050-2064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34043829

RESUMO

Plant glandular secretory trichomes (GSTs) produce various specialized metabolites. Increasing GST density represents a strategy to enhance the yield of these chemicals; however, the gene regulatory network that controls GST initiation remains unclear. In a previous study of Artemisia annua L., we found that a HD-ZIP IV transcription factor, AaHD1, promotes GST initiation by directly regulating AaGSW2. Here, we identified two AaHD1-interacting transcription factors, namely AaMIXTA-like 2 (AaMYB16) and AaMYB5. Through the generation and characterization of transgenic plants, we found that AaMYB16 is a positive regulator of GST initiation, whereas AaMYB5 has the opposite effect. Notably, neither of them regulates GST formation independently. Rather, they act competitively, by interacting and modulating AaHD1 promoter binding activity. Additionally, the phytohormone jasmonic acid (JA) was shown to be associated with the AaHD1-AaMYB16/AaMYB5 regulatory network through transcriptional regulation via a JASMONATE-ZIM DOMAIN (JAZ) protein repressor. These results bring new insights into the mechanism of GST initiation through regulatory complexes, which appear to have similar functions in a range of vascular plant taxa.


Assuntos
Artemisia annua , Artemisia annua/genética , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
8.
New Phytol ; 231(5): 1858-1874, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973259

RESUMO

Artemisinin, isolated from Artemisia annua, is recommended as the preferred drug to fight malaria. Previous research showed that jasmonate (JA)-mediated promotion of artemisinin accumulation depended on light. However, the mechanism underlying the interaction of light and JA in regulating artemisinin accumulation is still unknown. We identified a WRKY transcription factor, AaWRKY9, using transcriptome analysis. The glandular trichome-specific AaWRKY9 positively regulates artemisinin biosynthesis by directly binding to the promoters of AaDBR2 and AaGSW1. The key regulator in the light pathway AaHY5 activates the expression of AaWRKY9 by binding to its promoter. In addition, AaWRKY9 interacts with AaJAZ9, a repressor in the JA signalling pathway. AaJAZ9 represses the transcriptional activation activity of AaWRKY9 in the absence of methyl jasmonate. Notably, in the presence of methyl jasmonate, the transcriptional activation activity of AaWRKY9 is increased. Taken together, our results reveal a novel molecular mechanism underlying AaWRKY9 contributes to light-mediated and jasmonate-mediated to regulate the biosynthesis of artemisinin in A. annua. Our study provides new insights into integrating the two signalling pathways to regulate terpene biosynthesis in plants.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Ciclopentanos , Oxilipinas , Proteínas de Plantas/genética , Tricomas
9.
J Exp Bot ; 72(5): 1691-1701, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33165526

RESUMO

Glandular secreting trichomes (GSTs) synthesize and secrete large quantities of secondary metabolites, some of which have well-established commercial value. An example is the anti-malarial compound artemisinin, which is synthesized in the GSTs of Artemisia annua. Accordingly, there is considerable interest in understanding the processes that regulate GST density as a strategy to increase artemisinin production. In this study, we identified a GST-specific WRKY transcription factor from A. annua, AaGSW2, which is positively regulated by the direct binding of the homeodomain proteins AaHD1 and AaHD8 to the L1-box of the AaGSW2 promoter. Overexpression of AaGSW2 in A. annua significantly increased GST density, while AaGSW2 knockdown lines showed impaired GST initiation. Ectopic expression of AaGSW2 homologs from two mint cultivars, Mentha spicata and Mentha haplocalyx, in A. annua also induced GST formation. These results reveal a molecular mechanism involving homeodomain and WRKY proteins that controls glandular trichome initiation, at least part of which is shared by A. annua and mint.


Assuntos
Artemisia annua , Artemisia annua/genética , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
10.
Allergol Int ; 69(1): 35-45, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31445840

RESUMO

Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.


Assuntos
Hipersensibilidade/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Humanos , Hipersensibilidade/terapia , Transplante de Células-Tronco Mesenquimais/métodos
11.
New Phytol ; 218(2): 567-578, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377155

RESUMO

Glandular trichomes and cuticles are both specialized structures that cover the epidermis of aerial plant organs. The former are commonly regarded as 'biofactories' for producing valuable natural products. The latter are generally considered as natural barriers for defending plants against abiotic and biotic stresses. However, the regulatory network for their formation and relationship remains largely elusive. Here we identify a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, AaHD8, directly promoting the expression of AaHD1 for glandular trichome initiation in Artemisia annua. We found that AaHD8 positively regulated leaf cuticle development in A. annua via controlling the expression of cuticle-related enzyme genes. Furthermore, AaHD8 interacted with a MIXTA-like protein AaMIXTA1, a positive regulator of trichome initiation and cuticle development, forming a regulatory complex and leading to enhanced transcriptional activity in regulating the expression of AaHD1 and cuticle development genes. Our results reveal a molecular mechanism by which a novel HD-ZIP IV/MIXTA complex plays a significant role in regulating epidermal development, including glandular trichome initiation and cuticle formation.


Assuntos
Artemisia annua/crescimento & desenvolvimento , Complexos Multiproteicos/metabolismo , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Tricomas/crescimento & desenvolvimento , Artemisia annua/genética , Artemisia annua/ultraestrutura , Sequência de Bases , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Epiderme Vegetal/genética , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/genética , Ligação Proteica , Transcrição Gênica , Tricomas/genética , Tricomas/ultraestrutura
12.
Purinergic Signal ; 14(1): 47-58, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29159762

RESUMO

The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.


Assuntos
Proteína gp120 do Envelope de HIV , Neuralgia/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Zalcitabina/toxicidade , Animais , Fármacos Anti-HIV/toxicidade , Gânglios Espinais/metabolismo , Infecções por HIV/complicações , Hiperalgesia/metabolismo , Hiperalgesia/virologia , Masculino , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12 , Regulação para Cima
14.
BMC Public Health ; 16: 909, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581655

RESUMO

BACKGROUND: The aim of this study was to assess the effectiveness of an EPI smartphone application (EPI app) on improving vaccination coverage in rural Sichuan Province, China. METHODS: This matched-pair cluster randomized controlled study included 32 village doctors, matched in 16 pairs, and took place from 2013 to 2015. Village doctors in the intervention group used the EPI app and reminder text messages while village doctors in the control group used their usual procedures and text messages. The primary outcome was full vaccination coverage with all five vaccines (1 dose of BCG, 3 doses of hepatitis B, 3 doses of OPV, 3 doses of DPT and 1 dose of measles vaccine), and the secondary outcome was coverage with each dose of the five individual vaccines. We also conducted qualitative interviews with village doctors to understand perceptions on using the EPI app and how this changed their vaccination work. RESULTS: The full vaccination coverage increased statistically significant from baseline to end-line in both the intervention (67 % [95 % CI:58-75 %] to 84 % [95 % CI:76-90 %], P = 0.028) and control group (71 % [95 % CI:62-79 %] to 82 % [95 % CI:74-88 %], P = 0.014). The intervention group had higher increase in full vaccination coverage from baseline to end-line compared to the control group (17 % vs 10 %), but this was not statistically significant (P = 0.164). Village doctors found it more convenient to use the EPI app to manage child vaccination and also reported saving time by looking up information of caregivers and contacting caregivers for overdue vaccinations quicker. However, village doctors found it hard to manage children who migrated out of the counties. CONCLUSIONS: This study showed that an app and text messages can be used by village doctors to improve full vaccination coverage, though no significant increase in vaccination coverage was found when assessing the effect of the app on its own. Village doctors using EPI app reported having improved their working efficiency of managing childhood vaccination. Future studies should be conducted to evaluate the impact of more integrated approach of mHealth intervention on child immunization. TRIAL REGISTRATION: Chinese Clinical Trials Registry (ChiCTR): ChiCTR-TRC- 13003960 , registered on December 6, 2013.


Assuntos
Programas de Imunização/métodos , Imunização/estatística & dados numéricos , Aplicativos Móveis , Avaliação de Programas e Projetos de Saúde/estatística & dados numéricos , Serviços de Saúde Rural , Criança , Pré-Escolar , China , Análise por Conglomerados , Feminino , Humanos , Masculino , Smartphone
15.
Biochem Pharmacol ; 202: 115116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671791

RESUMO

Cyclosporine A (CsA) is a widely known immunosuppressive agent that is clinically important in autoimmune diseases owing to its selective suppression of T lymphocytes. Although it has long been recognized to inhibit T cell responses by blocking calcineurin, the potential targets and specific downstream mechanisms remain elusive. Herein, we built a comprehensive single-cell transcriptomic landscape of immune cells in the blank, untreated experimental autoimmune uveitis (EAU), and CsA-treated EAU mice. CsA reversed EAU-associated changes in cell type composition, genomic expression, cell trajectory, and cell-cell communication. We found that CsA reverses the proportion change of disease-related immune cells; regulates several crucial pathogenic factors (eg. IL1r1, CD48, and Bhlhe40) in T helper 17 cells (Th17), the transcription factor Bhlhe40 was also rescued in T helper 1 cells (Th1); and may differentiate Tregs into a state of enhanced immunosuppression. In addition, we revealed the rescued impact of CsA on all immune cell types, especially on plasma B cells differentiation and immunoglobulin secretion. Furthermore, comparisons with glucocorticoids showed that CsA might have a more premium rescue effect involved in attenuating the pathogenicity of autoreactive T cells. Our work provides a comprehensive single-cell transcriptional atlas of immune cells under CsA therapy, providing advanced insights into the mechanisms underlying CsA and a reference for developing new therapeutic strategies for autoimmune diseases.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Doenças Autoimunes/tratamento farmacológico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Modelos Animais de Doenças , Camundongos , Análise de Célula Única , Células Th17
16.
Front Plant Sci ; 13: 885622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734250

RESUMO

Plants have evolved sophisticated systems for regulating the biosynthesis of specialized phytochemicals. Artemisinin, which is a sesquiterpene lactone widely used in anti-malaria treatment, is produced by the Artemisia annua L. plant. However, the artemisinin content in A. annua is low and difficult to meet market demands. Studies have shown that artemisinin biosynthesis in A. annua has complex temporal and spatial specificity and is under tightly transcriptional regulation. However, the mechanism of transcriptional regulation of artemisinin biosynthesis remains unclear. In this study, we identified two MYC-type bHLH transcription factors (AabHLH2 and AabHLH3) as novel regulators of artemisinin biosynthesis. These bHLH TFs act as transcription repressors and function redundantly to negatively regulate artemisinin biosynthesis. Furthermore, AabHLH2 and AabHLH3 are nuclear proteins that bind to DNA elements with similar specificity to that of AaMYC2, but lack the conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Together, our findings reveal a novel artemisinin biosynthesis regulatory network, provide new insight into how specialized metabolites are modulated in plants, and propose a model in which different bHLH TFs coordinated in regulating artemisinin production in the plant. Finally, this study provides some useful target genes for metabolic engineering of artemisinin production via CRISPR/Cas9 gene editing.

17.
Ann Transl Med ; 10(12): 699, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35845536

RESUMO

Background: High dose systemic glucocorticoid is the main therapy of treatment-naïve Vogt-Koyanagi-Harada (VKH) disease. However, series side effects induced by high dose systemic glucocorticoid frequently occur, which makes alternative therapy necessary for certain patients. This study sought to compare the efficacy and safety of systemic glucocorticoid-free (SGF) therapy with conventional therapy (CT) as an initial treatment for VKH patients. Methods: VKH patients who had not been systemically treated were enrolled. Patients were allocated into 2 therapeutic groups depending on their treatments. In CT group, patients received systemic glucocorticoid plus immunosuppressants (IS), and in SGF group, patients received adalimumab (ADA) plus IS. Patients received approximately 12 months treatment and visit monthly. The outcome parameters included the changes of best-corrected visual acuity (BCVA), intraocular inflammation (including anterior chamber cell grade and vitritis grade) and central macular thickness (CMT) (the change values define as the final-visit values subtracted from baseline counterparts). Other outcomes included the relapses times of ocular inflammation, adverse events (AEs), changes of optic nerve inflammation (ONI) and intraocular/extraocular manifestations. Results: A total of 30 patients (60 eyes) were included. with 19 patients (38 eyes) in CT group and 11 patients (22 eyes) in SGF group. After approximately 1 year of treatment, the improvements of BCVA were slight better in the SGF group (0.57±0.23) than in the CT group (0.40±0.26), (P=0.014). In both groups, the ocular inflammatory improvements in both groups were similar, with an improvement of AC cell grade of -1.5 (-2, -0.5) in CT group versus -1 (-2, -1) in SGF group (P=0.367); improvement of vitritis grade was 0 (-1.25, 0) in CT group and -1 (-1, -1) in SGF group (P=0.050). The improvement in CMT was similar in both groups, with -523.47±412.09 µm in CT group and -362.73±375.73 µm in SGF group (P=0.572). The mean number of relapses was 1 (0, 2) in the CT group and 0 (0, 2) in the SGF group (P=0.372). No severe AEs were observed in this study. Conclusions: SGF therapy is effective, safe, and well-tolerated in treatment-naïve VKH patients. SGF therapy seems to be a feasible option in patients with existing systemic diseases intolerant to glucocorticoid.

18.
Cell Rep Med ; 3(8): 100699, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35896115

RESUMO

There is a specific reactivity and characteristic remodeling of the periocular tissue in thyroid-associated ophthalmopathy (TAO). However, local cell changes responsible for these pathological processes have not been sufficiently identified. Here, single-cell RNA sequencing is performed to characterize the transcriptional changes of cellular components in the orbital connective tissue in individuals with TAO. Our study shows that lipofibroblasts with RASD1 expression are highly involved in inflammation and adipogenesis during TAO. ACKR1+ endothelial cells and adipose tissue macrophages may engage in TAO pathogenesis. We find CD8+CD57+ cytotoxic T lymphocytes with the terminal differentiation phenotype to be another source of interferon-γ, a molecule actively engaging in TAO pathogenesis. Cell-cell communication analysis reveals increased activity of CXCL8/ACKR1 and TNFSF4/TNFRSF4 interactions in TAO. This study provides a comprehensive local cell landscape of TAO and may be valuable for future therapy investigation.


Assuntos
Oftalmopatia de Graves , Adipogenia/genética , Células Endoteliais/metabolismo , Oftalmopatia de Graves/genética , Humanos , Ligante OX40/genética , Órbita/metabolismo , Análise de Sequência de RNA , Proteínas ras/genética
19.
Protein Cell ; 13(6): 422-445, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34748200

RESUMO

Aging-induced changes in the immune system are associated with a higher incidence of infection and vaccination failure. Lymph nodes, which filter the lymph to identify and fight infections, play a central role in this process. However, careful characterization of the impact of aging on lymph nodes and associated autoimmune diseases is lacking. We combined single-cell RNA sequencing (scRNA-seq) with flow cytometry to delineate the immune cell atlas of cervical draining lymph nodes (CDLNs) of both young and old mice with or without experimental autoimmune uveitis (EAU). We found extensive and complicated changes in the cellular constituents of CDLNs during aging. When confronted with autoimmune challenges, old mice developed milder EAU compared to young mice. Within this EAU process, we highlighted that the pathogenicity of T helper 17 cells (Th17) was dampened, as shown by reduced GM-CSF secretion in old mice. The mitigated secretion of GM-CSF contributed to alleviation of IL-23 secretion by antigen-presenting cells (APCs) and may, in turn, weaken APCs' effects on facilitating the pathogenicity of Th17 cells. Meanwhile, our study further unveiled that aging downregulated GM-CSF secretion through reducing both the transcript and protein levels of IL-23R in Th17 cells from CDLNs. Overall, aging altered immune cell responses, especially through toning down Th17 cells, counteracting EAU challenge in old mice.


Assuntos
Doenças Autoimunes , Uveíte , Envelhecimento , Animais , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/metabolismo , Uveíte/induzido quimicamente , Uveíte/patologia , Virulência
20.
Nat Commun ; 13(1): 5866, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195600

RESUMO

Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH.


Assuntos
Doenças Autoimunes , Uveíte , Síndrome Uveomeningoencefálica , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células Th17 , Uveíte/tratamento farmacológico , Uveíte/genética , Síndrome Uveomeningoencefálica/tratamento farmacológico , Síndrome Uveomeningoencefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA