Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant Cell ; 36(6): 2253-2271, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38416876

RESUMO

Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Brassinosteroides/metabolismo , DNA de Plantas/metabolismo , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fosforilação , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Biotechnol J ; 22(1): 131-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703500

RESUMO

Glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to environmental stresses, but the function of GRP genes involved in salt stress and the underlying mechanism remain unclear. In this study, we identified BpGRP1 (glycine-rich RNA-binding protein), a Betula platyphylla gene that is induced under salt stress. The physiological and molecular responses to salt tolerance were investigated in both BpGRP1-overexpressing and suppressed conditions. BpGRF3 (growth-regulating factor 3) was identified as a regulatory factor upstream of BpGRP1. We demonstrated that overexpression of BpGRF3 significantly increased the salt tolerance of birch, whereas the grf3-1 mutant exhibited the opposite effect. Further analysis revealed that BpGRF3 and its interaction partner, BpSHMT, function upstream of BpGRP1. We demonstrated that BpmiR396c, as an upstream regulator of BpGRF3, could negatively regulate salt tolerance in birch. Furthermore, we uncovered evidence showing that the BpmiR396c/BpGRF3 regulatory module functions in mediating the salt response by regulating the associated physiological pathways. Our results indicate that BpmiR396c regulates the expression of BpGRF3, which plays a role in salt tolerance by targeting BpGRP1.


Assuntos
Betula , Tolerância ao Sal , Tolerância ao Sal/genética , Betula/genética , Betula/metabolismo , Estresse Fisiológico/genética , Glicina , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/metabolismo
3.
Physiol Plant ; 176(3): e14350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818576

RESUMO

Drought stress exerts a significant impact on the growth, development, and yield of fruit trees. Cerasus humilis is an endemic drought-resistant fruit tree in northern China. To elucidate the underlying mechanism of drought resistance in C. humilis, comprehensive physiological measurements and transcriptome analysis were conducted on the leaves of C. humilis subjected to 15- or 22-days of drought stress. We identified multiple GO terms and KEGG pathways associated with the drought stress response by performing GO and KEGG analysis on DEGs. Furthermore, through the prediction of transcription factors (TFs) and analysis of their expression levels, we observed differential expression patterns among most members of stress-responsive TF families as the duration of drought stress increased. WGCNA analysis was performed on the transcriptome to identify gene cluster modules that exhibited a strong correlation with the durations of drought. Subsequently, these modules underwent GO and KEGG enrichment analyses. The study revealed that the TF-mediated lignin biosynthesis pathway, along with the plant hormone signal transduction pathway, played a prominent role in responding to drought stress of C. humilis. Gene profiling analysis, qRT-PCR, and determination of phytohormone and lignin contents further supported this hypothesis. The hierarchical gene regulatory network was finally constructed based on DEGs from the aforementioned key enriched pathways to predict the gene regulatory mechanisms in response to stress for C. humilis. The findings from this study provide valuable insights into how C. humilis copes with drought stress while analyzing crucial gene pathways associated with its resistance from a TF perspective. This research is significant for the genetic breeding of economic forests.


Assuntos
Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Reguladores de Crescimento de Plantas/metabolismo , Redes Reguladoras de Genes , Lignina/metabolismo , Lignina/genética , Lignina/biossíntese , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Resistência à Seca
4.
New Phytol ; 237(2): 684-697, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263708

RESUMO

Protein-targeting technologies represent essential approaches in biological research. Protein knockdown tools developed recently in mammalian cells by exploiting natural degradation mechanisms allow for precise determination of protein function and discovery of degrader-type drugs. However, no method to directly target endogenous proteins for degradation is currently available in plants. Here, we describe a novel method for targeted protein clearance by engineering an autophagy receptor with a binder to provide target specificity and an ATG8-binding motif (AIM) to link the targets to nascent autophagosomes, thus harnessing the autophagy machinery for degradation. We demonstrate its specificity and broad potentials by degrading various fluorescence-tagged proteins, including cytosolic mCherry, the nucleus-localized bZIP transcription factor TGA5, and the plasma membrane-anchored brassinosteroid receptor BRI1, as well as fluorescence-coated peroxisomes, using a tobacco-based transient expression system. Stable expression of AIM-based autophagy receptors in Arabidopsis further confirms the feasibility of this approach in selective autophagy of endogenous proteins. With its wide substrate scope and its specificity, our concept of engineered AIM-based selective autophagy could provide a convenient and robust research tool for manipulating endogenous proteins in plants and may open an avenue toward degradation of cytoplasmic components other than proteins in plant research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagossomos/metabolismo , Autofagia , Plantas/metabolismo , Proteínas de Transporte/metabolismo , Arabidopsis/metabolismo , Mamíferos , Proteínas de Arabidopsis/metabolismo
5.
New Phytol ; 240(6): 2419-2435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743547

RESUMO

Crop yield must increase to achieve food security in the face of a growing population and environmental deterioration. Grain size is a prime breeding target for improving grain yield and quality in crop. Here, we report that autophagy emerges as an important regulatory pathway contributing to grain size and quality in rice. Mutations of rice Autophagy-related 9b (OsATG9b) or OsATG13a causes smaller grains and increase of chalkiness, whereas overexpression of either promotes grain size and quality. We also demonstrate that THOUSAND-GRAIN WEIGHT 6 (TGW6), a superior allele that regulates grain size and quality in the rice variety Kasalath, interacts with OsATG8 via the canonical Atg8-interacting motif (AIM), and then is recruited to the autophagosome for selective degradation. In consistent, alteration of either OsATG9b or OsATG13a expression results in reciprocal modulation of TGW6 abundance during grain growth. Genetic analyses confirmed that knockout of TGW6 in either osatg9b or osatg13a mutants can partially rescue their grain size defects, indicating that TGW6 is one of the substrates for autophagy to regulate grain development. We therefore propose a potential framework for autophagy in contributing to grain size and quality in crops.


Assuntos
Oryza , Oryza/fisiologia , Melhoramento Vegetal , Grão Comestível/genética , Autofagia
6.
Proc Natl Acad Sci U S A ; 117(33): 20325-20333, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747542

RESUMO

Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1ß. Unlike DSP1α, DSP1ß is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , RNA Nuclear Pequeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Proteínas Nucleares/genética , Pólen , Sementes/genética , Sementes/metabolismo
7.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686432

RESUMO

SWEET proteins play important roles in plant growth and development, sugar loading in phloem and resistance to abiotic stress through sugar transport. In this study, 13 BpSWEET genes were identified from birch genome. Collinearity analysis showed that there were one tandem repeating gene pair (BpSWEET1b/BpSWEET1c) and two duplicative gene pairs (BpSWEET17a/BpSWEET17b) in the BpSWEET gene family. The BpSWEET gene promoter regions contained several cis-acting elements related to stress resistance, for example: hormone-responsive and low-temperature-responsive cis-elements. Analysis of transcriptome data showed that BpSWEET genes were highly expressed in several sink organs, and the most BpSWEET genes were rapidly up-regulated under cold stress. BpSWEET1c, which was highly expressed in cold stress, was selected for further analysis. It was found that BpSWEET1c was located on the cell membrane. After 6 h of 4 °C stress, sucrose content in the leaves and roots of transient overexpressed BpSWEET1c was significantly higher than that of the control. MDA content in roots was significantly lower than that of the control. These results indicate that BpSWEET1c may play a positive role in the response to cold stress by promoting the metabolism and transport of sucrose. In conclusion, 13 BpSWEET genes were identified from the whole genome level. Most of the SWEET genes of birch were expressed in the sink organs and could respond to cold stress. Transient overexpression of BpSWEET1c changed the soluble sugar content and improved the cold tolerance of birch.


Assuntos
Betula , Resposta ao Choque Frio , Resposta ao Choque Frio/genética , Betula/genética , Membrana Celular , Açúcares
8.
Plant Mol Biol ; 109(6): 689-702, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35486290

RESUMO

KEY MESSAGE: Construction of ML-hGRN for the salt pathway in Populus davidiana × P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus davidiana × P. bolleana under salt stress. Many woody plants, including Populus davidiana × P. bolleana, have made great contributions to human production and life. High salt is one of the main environmental factors that restricts the growth of poplar. This study found that high salt could induce strong biochemical changes in poplar. To detect the effect of salt treatment on gene expression, 18 libraries were sequenced on the Illumina sequencing platform. The results identified a large number of early differentially expressed genes (DEGs) and a small number of late DEGs, which indicated that most of the salt response genes of poplar were early response genes. In addition, 197 TFs, including NAC, ERF, and other TFs related to salt stress, were differentially expressed during salt treatment, which indicated that these TFs may play an important role in the salt stress response of poplar. Based on the RNA-seq analysis results, multilayered hierarchical gene regulatory networks (ML-hGRNs) of salt stress- and lignocellulosic synthesis-related DEGs were constructed using the GGM algorithm. The lignocellulosic synthesis regulatory network under salt stress revealed that lignocellulosic synthesis might play an important role in the process of salt stress resistance. Furthermore, the NAC family transcription factor PdbNAC83, which was found in the upper layer in both pathways, was selected to verify the accuracy of the ML-hGRNs. DAP-seq showed that the binding site of PdbNAC83 included a "TT(G/A)C(G/T)T" motif, and ChIP-PCR further verified that PdbNAC83 can regulate the promoters of at least six predicted downstream genes (PdbNLP2-2, PdbZFP6, PdbMYB73, PdbC2H2-like, PdbMYB93-1, PdbbHLH094) by binding to the "TT(G/A)C(G/T)T" motif, which indicates that the predicted regulatory network diagram obtained in this study is relatively accurate. In conclusion, a species-specific salt response pathway might exist in poplar, and this finding lays a foundation for further study of the regulatory mechanism of the salt stress response and provides new clues for the use of genetic engineering methods to create high-quality and highly resistant forest germplasms.


Assuntos
Populus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Lignina , Populus/genética , Populus/metabolismo , Estresse Salino/genética , Transcriptoma
9.
Plant Physiol ; 180(4): 2142-2151, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31227618

RESUMO

Small nuclear RNAs (snRNAs) play essential roles in spliceosome assembly and splicing. Most snRNAs are transcribed by the DNA-dependent RNA polymerase II (Pol II) and require 3'-end endonucleolytic cleavage. We have previously shown that the Arabidopsis (Arabidopsis thaliana) Defective in snRNA Processing 1 (DSP1) complex, composed of at least five subunits, is responsible for snRNA 3' maturation and is essential for plant development. Yet it remains unclear how DSP1 complex subunits act together to process snRNAs. Here, we show that DSP4, a member of the metallo-ß-lactamase family, physically interacts with DSP1 through its ß-Casp domain. Null dsp4-1 mutants have pleiotropic developmental defects, including impaired pollen development and reduced pre-snRNA transcription and 3' maturation, resembling the phenotype of the dsp1-1 mutant. Interestingly, dsp1-1 dsp4-1 double mutants exhibit complete male sterility and reduced pre-snRNA transcription and 3'-end maturation, unlike dsp1-1 or dsp4-1 In addition, Pol II occupancy at snRNA loci is lower in dsp1-1 dsp4-1 than in either single mutant. We also detected miscleaved pre-snRNAs in dsp1-1 dsp4-1, but not in dsp1-1 or dsp4-1 Taken together, these data reveal that DSP1 and DSP4 function is essential for pollen development, and that the two cooperatively promote pre-snRNA transcription and 3'-end processing efficiency and accuracy.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , RNA Nuclear Pequeno/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fosfatases de Especificidade Dupla/genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Mutação/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Ligação Proteica , RNA Nuclear Pequeno/genética
10.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709150

RESUMO

Leaf angle (LA), defined as the angle between the plant stem and leaf adaxial side of the blade, generally shapes the plant architecture into a loosen or dense structure, and thus influences the light interception and competition between neighboring plants in natural settings, ultimately contributing to the crop yield and productivity. It has been elucidated that brassinosteroid (BR) plays a dominant role in determining LA, and other phytohormones also positively or negatively participate in regulating LA. Accumulating evidences have revealed that these phytohormones interact with each other in modulating various biological processes. However, the comprehensive discussion of how the phytohormones and their interaction involved in shaping LA is relatively lack. Here, we intend to summarize the advances in the LA regulation mediated by the phytohormones and their crosstalk in different plant species, mainly in rice and maize, hopefully providing further insights into the genetic manipulation of LA trait in crop breeding and improvement in regarding to overcoming the challenge from the continuous demands for food under limited arable land area.


Assuntos
Brassinosteroides/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197094

RESUMO

Autophagy is a highly evolutionarily-conserved catabolic process facilitating the development and survival of organisms which have undergone favorable and/or stressful conditions, in particular the plant. Accumulating evidence has implicated that autophagy is involved in growth and development, as well as responses to various stresses in plant. Similarly, phytohormones also play a pivotal role in the response to various stresses in addition to the plant growth and development. However, the relationship between autophagy and phytohormones still remains poorly understood. Here, we review advances in the crosstalk between them upon various environmental stimuli. We also discuss how autophagy coordinates the phytohormones to regulate plant growth and development. We propose that unraveling the regulatory role(s) of autophagy in modulating the homeostasis of phytohormones would benefit crop breeding and improvement under variable environments, in particular under suboptimal conditions.


Assuntos
Autofagia , Magnoliopsida/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Homeostase , Magnoliopsida/crescimento & desenvolvimento , Estresse Fisiológico
12.
Plant Physiol ; 171(2): 1182-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208287

RESUMO

Chloroplast, the photosynthetic organelle in plants, plays a crucial role in plant development and growth through manipulating the capacity of photosynthesis. However, the regulatory mechanism of chloroplast development still remains elusive. Here, we characterized a mutant with defective chloroplasts in rice (Oryza sativa), termed albino leaf1 (al1), which exhibits a distinct albino phenotype in leaves, eventually leading to al1 seedling lethality. Electronic microscopy observation demonstrated that the number of thylakoids was reduced and the structure of thylakoids was disrupted in the al1 mutant during rice development, which eventually led to the breakdown of chloroplast. Molecular cloning revealed that AL1 encodes the sole octotricopeptide repeat protein (RAP) in rice. Genetic complementation of Arabidopsis (Arabidopsis thaliana) rap mutants indicated that the AL1 protein is a functional RAP. Further analysis illustrated that three transcript variants were present in the AL1 gene, and the altered splices occurred at the 3' untranslated region of the AL1 transcript. In addition, our results also indicate that disruption of the AL1 gene results in an altered expression of chloroplast-associated genes. Consistently, proteomic analysis demonstrated that the abundance of photosynthesis-associated proteins is altered significantly, as is that of a group of metabolism-associated proteins. More specifically, we found that the loss of AL1 resulted in altered abundances of ribosomal proteins, suggesting that RAP likely also regulates the homeostasis of ribosomal proteins in rice in addition to the ribosomal RNA. Taken together, we propose that AL1, particularly the AL1a and AL1c isoforms, plays an essential role in chloroplast development in rice.


Assuntos
Cloroplastos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequências Repetitivas de Aminoácidos , Cloroplastos/ultraestrutura , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação/genética , Fenótipo , Fotossíntese/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , Ribossomos/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestrutura
13.
Plant Biotechnol J ; 14(12): 2300-2309, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27185473

RESUMO

Targeted manipulation of phenylalanine (Phe) synthesis is a potentially powerful strategy to boost biologically and economically important metabolites, including phenylpropanoids, aromatic volatiles and other specialized plant metabolites. Here, we use two transgenes to significantly increase the levels of aromatic amino acids, tomato flavour-associated volatiles and antioxidant phenylpropanoids. Overexpression of the petunia MYB transcript factor, ODORANT1 (ODO1), combined with expression of a feedback-insensitive E. coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (AroG), altered the levels of multiple primary and secondary metabolites in tomato fruit, boosting levels of multiple secondary metabolites. Our results indicate that coexpression of AroG and ODO1 has a dual effect on Phe and related biosynthetic pathways: (i) positively impacting tyrosine (Tyr) and antioxidant related metabolites, including ones derived from coumaric acid and ferulic acid; (ii) negatively impacting other downstream secondary metabolites of the Phe pathway, including kaempferol-, naringenin- and quercetin-derived metabolites, as well as aromatic volatiles. The metabolite profiles were distinct from those obtained with either single transgene. In addition to providing fruits that are increased in flavour and nutritional chemicals, coexpression of the two genes provides insights into regulation of branches of phenylpropanoid metabolic pathways.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
14.
Plant Physiol ; 169(2): 1179-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243616

RESUMO

Panicle development, a key event in rice (Oryza sativa) reproduction and a critical determinant of grain yield, forms a branched structure containing multiple spikelets. Genetic and environmental factors can perturb panicle development, causing panicles to degenerate and producing characteristic whitish, small spikelets with severely reduced fertility and yield; however, little is known about the molecular basis of the formation of degenerating panicles in rice. Here, we report the identification and characterization of the rice panicle degenerative mutant tutou1 (tut1), which shows severe defects in panicle development. The tut1 also shows a pleiotropic phenotype, characterized by short roots, reduced plant height, and abnormal development of anthers and pollen grains. Molecular genetic studies revealed that TUT1 encodes a suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE)-like protein. We found that TUT1 contains conserved functional domains found in eukaryotic SCAR/WAVE proteins, and was able to activate Actin-related protein2/3 to promote actin nucleation and polymerization in vitro. Consistently, tut1 mutants show defects in the arrangement of actin filaments in trichome. These results indicate that TUT1 is a functional SCAR/WAVE protein and plays an important role in panicle development.


Assuntos
Actinas/metabolismo , Topos Floridos/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Topos Floridos/fisiologia , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Receptores de AMP Cíclico/genética , Receptores de AMP Cíclico/metabolismo
15.
J Exp Bot ; 67(18): 5339-5347, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543605

RESUMO

Chloroplasts play an essential role in plant growth and development through manipulating photosynthesis and the production of hormones and metabolites. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, identification of novel components is still lacking. We isolated a rice (Oryza sativa) mutant, termed albino leaf 2 (al2), using genetic screening. Phenotypic analysis revealed that the al2 mutation caused obvious albino leaves at the early developmental stage, eventually leading to al2 seedling death. Electron microscopy investigations indicated that the chloroplast structure was disrupted in the al2 mutants at an early developmental stage and subsequently resulted in the breakdown of the entire chloroplast. Molecular cloning illustrated that AL2 encodes a chloroplast group IIA intron splicing facilitator (CRS1) in rice, which was confirmed by a genetic complementation experiment. Moreover, our results demonstrated that AL2 was constitutively expressed in various tissues, including green and non-green tissues. Interestingly, we found that the expression levels of a subset of chloroplast genes that contain group IIA and IIB introns were significantly reduced in the al2 mutant compared to that in the wild type, suggesting that AL2 is a functional CRS1 in rice. Differing from the orthologous CRS1 in maize and Arabidopsis that only regulates splicing of the chloroplast group II intron, our results demonstrated that the AL2 gene is also likely to be involved in the splicing of the chloroplast group I intron. They also showed that disruption of AL2 results in the altered expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded polymerases and nuclear-encoded chloroplast genes. Taken together, these findings shed new light on the function of nuclear-encoded chloroplast group I and II intron splicing factors in rice.


Assuntos
Cloroplastos/genética , Genes de Cloroplastos , Íntrons/genética , Oryza/genética , Proteínas de Plantas/fisiologia , Clorofila/metabolismo , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Genes de Cloroplastos/genética , Genes de Cloroplastos/fisiologia , Íntrons/fisiologia , Microscopia Eletrônica , Oryza/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Splicing de RNA/genética , Splicing de RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
16.
J Exp Bot ; 66(19): 6047-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26142419

RESUMO

Leaf morphology, particularly in crop, is one of the most important agronomic traits because it influences the yield through the manipulation of photosynthetic capacity and transpiration. To understand the regulatory mechanism of leaf morphogenesis, an Oryza sativa dominant mutant, rolled and erect leaf 1 (rel1) has been characterized. This mutant has a predominant rolled leaf, increased leaf angle, and reduced plant height phenotype that results in a reduction in grain yield. Electron microscope observations indicated that the leaf incurvations of rel1 dominant mutants result from the alteration of the size and number of bulliform cells. Molecular cloning revealed that the rel1 dominant mutant phenotype is caused by the activation of the REL1 gene, which encodes a novel unknown protein, despite its high degree of conservation among monocot plants. Moreover, the downregulation of the REL1 gene in the rel1 dominant mutant restored the phenotype of this dominant mutant. Alternatively, overexpression of REL1 in wild-type plants induced a phenotype similar to that of the dominant rel1 mutant, indicating that REL1 plays a positive role in leaf rolling and bending. Consistent with the observed rel1 phenotype, the REL1 gene was predominantly expressed in the meristem of various tissues during plant growth and development. Nevertheless, the responsiveness of both rel1 dominant mutants and REL1-overexpressing plants to exogenous brassinosteroid (BR) was reduced. Moreover, transcript levels of BR response genes in the rel1 dominant mutants and REL1-overexpressing lines were significantly altered. Additionally, seven REL1-interacting proteins were also identified from a yeast two-hybrid screen. Taken together, these findings suggest that REL1 regulates leaf morphology, particularly in leaf rolling and bending, through the coordination of BR signalling transduction.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Clonagem Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
17.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38145489

RESUMO

The microRNAs, which are small RNAs of 18-25 nt in length, act as key regulatory factors in posttranscriptional gene expression during plant growth and development. However, little is known about their regulatory roles in response to stressful environments in birch (Betula platyphylla). Here, we characterized and further explored miRNAs from osmotic- and salt-stressed birch. Our analysis revealed a total of 190 microRNA (miRNA) sequences, which were classified into 180 conserved miRNAs and 10 predicted novel miRNAs based on sequence homology. Furthermore, we identified Bp-miR408a under osmotic and salt stress and elucidated its role in osmotic and salt stress responses in birch. Notably, under osmotic and salt stress, Bp-miR408a contributed to osmotic and salt tolerance sensitivity by mediating various physiological changes, such as increases in reactive oxygen species accumulation, osmoregulatory substance contents and Na+ accumulation. Additionally, molecular analysis provided evidence of the in vivo targeting of BpBCP1 (blue copper protein) transcripts by Bp-miR408a. The overexpression of BpBCP1 in birch enhanced osmotic and salt tolerance by increasing the antioxidant enzyme activity, maintaining cellular ion homeostasis and decreasing lipid peroxidation and cell death. Thus, we reveal a Bp-miR408a-BpBCP1 regulatory module that mediates osmotic and salt stress responses in birch.


Assuntos
MicroRNAs , Estresse Salino , Betula/fisiologia , Tolerância ao Sal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Pressão Osmótica/fisiologia
18.
Sci Total Environ ; 937: 173422, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38796019

RESUMO

Tamarix hispida is highly tolerant to salt, drought and heavy metal stress and is a potential material for the remediation of cadmium (Cd)-contaminated soil under harsh conditions. In this study, T. hispida growth and chlorophyll content decreased, whereas flavonoid and carotenoid contents increased under long-term Cd stress (25 d). The aboveground components of T. hispida were collected for RNA-seq to investigate the mechanism of Cd accumulation. GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in plant hormone-related pathways. Exogenous hormone treatment and determination of Cd2+ levels showed that ethylene (ETH) and abscisic acid (ABA) antagonists regulate Cd accumulation in T. hispida. Twenty-five transcription factors were identified as upstream regulators of hormone-related pathways. ThDRE1A, which was previously identified as an important regulatory factor, was selected for further analysis. The results indicated that ThABAH2.5 and ThACCO3.1 were direct target genes of ThDRE1A. The determination of Cd2+, ABA, and ETH levels indicated that ThDRE1A plays an important role in Cd accumulation through the antagonistic regulation of ABA and ETH. In conclusion, these results reveal the molecular mechanism underlying Cd accumulation in plants and identify candidate genes for further research.


Assuntos
Ácido Abscísico , Cádmio , Etilenos , Poluentes do Solo , Tamaricaceae , Cádmio/metabolismo , Ácido Abscísico/metabolismo , Tamaricaceae/metabolismo , Tamaricaceae/genética , Etilenos/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
Autophagy ; 20(2): 275-294, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37656054

RESUMO

Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.


Assuntos
Autofagia , Rhabdoviridae , Autofagia/genética , Proteínas Virais/metabolismo , Plantas/metabolismo , Proteínas de Fluorescência Verde , Glicoproteínas/farmacologia , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Antivirais/farmacologia
20.
Sci China Life Sci ; 66(6): 1231-1244, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907968

RESUMO

Brassinosteroid (BR) represents a group of steroid hormones that regulate plant growth and development as well as environmental adaptation. The fluctuation of external nutrient elements is a situation that plants frequently face in the natural environment, in which nitrogen (N) and phosphorus (P) are two of the most critical nutrients restraint of the early growth of plants. As the macronutrients, N and P are highly required by plants, but their availability or solubility in the soil is relatively low. Since iron (Fe) and P always modulate each other's content and function in plants mutually antagonistically, the regulatory mechanisms of Fe and P are inextricably linked. Recently, BR has emerged as a critical regulator in nutrient acquisition and phenotypic plasticity in response to the variable nutrient levels in Arabidopsis and rice. Here, we review the current understanding of the crosstalk between BR and the three major nutrients (N, P, and Fe), highlighting how nutrient signaling regulates BR synthesis and signaling to accommodate plant growth and development in Arabidopsis and rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Arabidopsis/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA