Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 52(13): 4292-4312, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37309247

RESUMO

Metal-organic framework (MOF) thin films could be used for ion/molecular sieving, sensing, catalysis, and energy storage, but thus far no large-scale applications are known. One of the reasons is the lack of convenient and controllable fabrication methods. This work reviews the cathodic deposition of MOF films, which has advantages (e.g., simple operations, mild conditions, and controllable MOF film thickness/morphology) over other reported techniques. Accordingly, we discuss the mechanism of the cathodic deposition of MOF films which consists of the electrochemically triggered deprotonation of organic linkers and the formation of inorganic building blocks. Thereafter, the main applications of cathodically deposited MOF films are introduced with the aim of showing this technique's wide-ranging applications. Finally, we give the remaining issues and outlooks of the cathodic deposition of MOF films to drive its future development.

2.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893360

RESUMO

Thioethers are critical in the fields of pharmaceuticals and organic synthesis, but most of the methods for synthesis alkyl thioethers employ foul-smelling thiols as starting materials or generate them as by-products. Additionally, most thiols are air-sensitive and are easily oxidized to produce disulfides under atmospheric conditions; thus, a novel method for synthesizing thioethers is necessary. This paper reports a simple, effective, green method for synthesizing dialkyl or alkyl aryl thioether derivatives using odorless, stable, low-cost ROCS2K as a thiol surrogate. This transformation offers a broad substrate scope and good functional group tolerance with excellent selectivity. The reaction likely proceeds via xanthate intermediates, which can be readily generated via the nucleophilic substitution of alkyl halides or aryl halides with ROCS2K under transition-metal-free and base-free conditions.

3.
Angew Chem Int Ed Engl ; 63(27): e202401817, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652758

RESUMO

Glass metal-organic framework (MOF) films can be fabricated from their crystalline counterparts through a melt-quenching process and are prospective candidates for gas separation because of the elimination of the grain boundaries in crystalline MOF films. However, current techniques are limited to producing glass MOF films with a thickness of tens of micrometers, which leads to ultralow gas permeances. Here, we report a novel cathodic deposition-assisted synthesis of glass ZIF-62 films with a thickness as low as ~1 µm. Electrochemical analyses and deposition experiments suggest that the cathodic deposition can lead to pure crystalline ZIF-62 films with a controllable thickness of ~2 µm to ~15 µm. Accordingly, glass ZIF-62 films with a thickness of ~1 µm to ~10 µm can be obtained after a thermal treatment. The fabricated defect-free glass ZIF-62 film measuring 2 µm in thickness shows a remarkable CO2/N2 and CO2/CH4 selectivity of 31.4 and 33.4, respectively, with a CO2 permeance which is over 30 times higher than the best-performing glass ZIF-62 films in literature.

4.
Chemistry ; 29(62): e202302338, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556185

RESUMO

The deposition of metal-organic framework (MOF) films with defined exposed facets is important to enhance the performance of these films for, for example, catalysis or separations. In this work, MOF films with specific exposed facets are electrodeposited anodically on various substrates (e. g. on copper-sputtered Si wafers, copper meshes, copper foams, and polypropylene membranes). The influence of the deposition parameters, including the pH of the solution, current density, concentration of linker, and solvent, on the exposed facets of the deposited MOFs was investigated. The results suggest that precise control over the supersaturation during anodic deposition is a possible strategy for synthesizing MOF crystals with well-defined exposed facets. This approach provides a powerful toolbox for various applications requiring crystal facet control of MOF films.

5.
Small ; 18(4): e2103561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761518

RESUMO

Cobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP2 -HS, CoP3 -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances. The identical OER performance of these CoPx -HS in alkaline solution is attributed to the similar surface reconstruction to CoOOH. CoP-HS exhibits the best catalytic activity for HER among these CoPx -HS in both acidic and alkaline media, originating from the adjusted electronic density of phosphorus to affect absorption-desorption process on H. Moreover, the calculated ΔGH* based on P-sites of CoP-HS follows a quite similar trend with the normalized overpotential and Tafel slope, indicating the important role of P-sites for the HER process. Moreover, CoP-HS displays good performance (cell voltage of 1.67 V at a current density of 50 mA cm-2 ) and high stability in 1 M KOH. For the first time, this work detailly presents the critical role of phosphorus in cobalt-based phosphides for water splitting, which provides the guidance for future investigations on transition metal phosphides from material design to mechanism understanding.

6.
Nano Lett ; 21(24): 10354-10360, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34860028

RESUMO

All-solid-state sodium batteries (ASSSBs) are attractive alternatives to lithium-ion batteries for grid-scale energy storage due to their high safety and ubiquitous distribution of Na sources. A critical component for ASSSB is sodium-ion conducting solid-state electrolyte (SSE). Here, we report a high-performance sodium-ion SSE with the recently developed bulk interfacial superionic conductor (BISC) concept. The ionic conductivity and areal conductance of the Na+ BISC at 25 °C reaches 6.5 × 10-4 S cm-1 and 260 mS cm-2, respectively. Using NaxCo0.7Mn0.3O2 (x ≈ 1.0, NaCMO) as the cathode active material, all-solid-state Na||NaCMO batteries exhibiting small overpotential and ∼180 cycle life are demonstrated under room temperature. This approach may also be used to prepare other metal ion, such as Mg2+, Al3+, and K+, based all-solid-state batteries.

7.
Angew Chem Int Ed Engl ; 60(47): 24950-24957, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543511

RESUMO

Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations. Electrochemical measurements indicate that in DMF, hydrogen peroxide is reduced to superoxide anions that deprotonate the carboxylic ligands. This single-electron reduction happens at much higher potentials than all previous reported methods. This prevents the co-deposition of metal and extends the range of possible metal nodes. Various pure MOF films (HKUST-1, MIL-53(Fe) and MOF-5) were prepared via this approach. HPACD was also used for the preparation of patterned MOF films and of flexible Cu-BTC coated paper membranes which reject 99.1 % of Rose Bengal from water with a permeance of 8.4 L m-2 h-1 bar-1 .

8.
J Cell Mol Med ; 24(5): 2772-2790, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030886

RESUMO

Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri-methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24-2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24-2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24-2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24-2 in liver cancer. This study elucidates a novel mechanism for miR24-2 in liver cancer and suggests that miR24-2 may be used as novel therapeutic targets of liver cancer.


Assuntos
Progressão da Doença , Histonas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Lisina/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Modelos Biológicos , Oncogenes , Proteínas Proto-Oncogênicas c-pim-1/genética
9.
Chem Commun (Camb) ; 60(9): 1140-1143, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38189083

RESUMO

Herein, we developed a synthetic strategy for the direct construction of C-S bonds to obtain biologically active sulfur-containing compounds and a methodology involving the reductive sulfuration of aldehydes or ketones to obtain diverse substituted thiol, disulfide, and thioester derivatives. EtOCS2K is demonstrated as a potential substitute for the Berzelius reagent or Lawesson's reagent for the construction of C-S bonds.

10.
Cell Signal ; 109: 110772, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321526

RESUMO

BACKGROUND: Although CircHULC was overexpressed in several cancers, the role of CircHULC in malignancies has yet to be elucidated. METHODS: Gene infection, tumorigenesis test in vitro and in vivo and the signaling pathway analysis were performed. RESULTS: our results indicate that CircHULC promotes growth of human liver cancer stem cells and the malignant differentiation of hepatocyte-like cells. Mechanistically, CircHULC enhances the methylation modification of PKM2 via CARM1 and the deacetylase Sirt1. Moreover, CircHULC enhances the binding ability of TP53INP2/DOR with LC3 and LC3 with ATG4, ATG3, ATG5, ATG12. Therefore, CircHULC promotes the formation of autophagosomes. In particular, the binding ability of phosphorylated Beclin1 (Ser14) to Vps15, Vps34, ATG14L were significantly increased after CircHULC was overexpressed. Strikingly, CircHULC affects the expression of chromatin reprogramming factors and oncogenes through autophagy. Thereafter, Oct4, Sox2, KLF4, Nanog, and GADD45 were significantly decreased and C-myc was increased after CircHULC was overexpressed. Thus, CircHULC promotes the expression of H-Ras, SGK, P70S6K, 4E-BP1, Jun, and AKT. Interestingly, both CARM1 and Sirt1 determine the cancerous function of CircHULC dependent on autophagy. CONCLUSIONS: we shed light on the fact that the targeted attenuation of deregulated functioning of CircHULC could be a viable approach for cancer treatment, and CircHULC may acts as the potential biomarker and therapeutic target for liver cancer.


Assuntos
Neoplasias Hepáticas , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Cromatina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Instabilidade Cromossômica , Proteínas Nucleares/metabolismo
11.
Noncoding RNA Res ; 8(4): 675-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860266

RESUMO

Researches indicate miR-3200 is closely related to tumorigenesis, However, the role of miR-3200 in human hepatocarcinogenesis is still unclear. In this study, we clearly demonstrate that miR-3200 accelerates the growth of liver cancer cells in vivo and in vitro. Obviously, these findings are noteworthy that miR-3200 affects the transcriptional regulation for several genes, including DSP,BABAM2, Rab7A,SQSTM1,PRKAG2,CDK1,ABCE1,BECN1,PTEN,UPRT. And miR-3200 affects the transcriptional ability of several genes, such as, upregulating CADPS, DSP,FBXO32, PPCA,SGK1, PATXN7L1, PLK2,ITGB5,FZD3,HOXC8,HSPA1A,C-Myc,CyclnD1,CyclinE,PCNA and down -regulating SUV39H1, MYO1G, OLFML3, CBX5, PPDE2A, HOXA7, RAD54L, CDC45,SHMT7,MAD2L1,P27,IQGAP3,PTEN,P57,SCAMP3,etc...On the other hand, it is obvious that miR-3200 affects the translational ability of several genes, such as, upregulating GNS,UPRT,EIFAD,YOS1,SGK1,K-Ras,PKM2,C-myc,Pim1,CyclinD1,mTOR,erbB-2,CyclinE,PCNA,RRAS,ARAF,RAPH1,etc.. and down-regulating KDM2A, AATF, TMM17B, RAB8B, MYO1G,P21WAF1/Cip1,GADD45,PTEN,P27,P18,P57,SERBP1,RPL34,UFD1,Bax,ANXA6,GSK3ß. Strikingly, miR-3200 affects some signaling pathway in liver cancer, including carbon metabolism signaling pathway, DNA replication pathway, FoxO signaling pathway, Hippo signaling pathway, serine and threonine metabolism signaling pathway, mTOR signaling pathway, Fatty acid biosynthesis signaling pathway, carcinogenesis-receptor activation signaling pathway, autophagy signaling pathway. Furthermore, our results suggest that miR-3200 enhances expression of RAB7A, and then Rab7A regulates the carcinogenic function of miR-3200 by increasing telomere remodeling in human liver cancer. These results are of great significance for the prevention and treatment of human liver cancer.

12.
Chem Commun (Camb) ; 59(75): 11232-11235, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655718

RESUMO

Herein, the diversity-oriented aromatization of cyclic hydrocarbons via potassium ethyl xanthogenate (EtOCS2K)/NH4I-mediated methylthiyl radical addition and thioether elimination was investigated under transition-metal-free conditions. The methylthiyl radical species were generated in situ via the NH4I-mediated decomposition of DMSO following which EtOCS2K promoted the breaking of carbon-sulfur bonds of thioether.

13.
Nanomicro Lett ; 15(1): 165, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386313

RESUMO

Lithium-sulfur (Li-S) batteries have received widespread attention, and lean electrolyte Li-S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur (E/S) ratios on battery energy density and the challenges for sulfur reduction reactions (SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios (< 10 µL mg-1), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li-S battery performance. Finally, an outlook is provided to guide future research on high energy density Li-S batteries.

14.
Noncoding RNA Res ; 8(4): 641-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37810370

RESUMO

miRNA is a noncoding RNA found in recent years and more than one third of human genes are the target of miRNAs. miR-624, located on human chromosome 14, is associated with tumorigenesis. However, the role of miR-624 in human hepatocarcinogenesis is still unclear. Herein, our results indicate that miR-624 accelerates the growth of liver cancer cells in vivo and in vitro. Moreover, the modification distribution of H3K9me1 on chromosomes is different between rLV group and rLV-miR-624 group. miR-624 affects epigenetic regulation of several genes in human liver cancer cells, such as RAB21, SMARCD3, MAPK6,PRRX1, ZFHX3, EMC3 (TMEM111). Furthermore, miR-624 affects transcriptome of some genes in liver cancer, including RAB21, UBE2N, PPP1CC,KPNA3, RAB7A,CPEB2,KLF4, MARK2, JUN, ARF6, TMEM39A. On the other hand, miR-624 affects proteome of several genes in liver cancer, such as, RBM5,PTK2, KDM2A,POLR2H, POLR2G,CDK6,KIF15,CUL2,FKBP2,ErbB-3,JUN, PKM2, CyclinE,PLK1, mTOR, PPARγ, Rab7A,ARAF, UPF3B ,PTEN, SUZ12, GADD45, H3.3, CUL5, ARF6,EMC3,ATG4B,ATG14,CALR. Interestingly, miR-624 affects the RAB7A interaction network in liver cancer cells, involving in CLTC,ITGB1,HNRNPU, DARS1, RPS16, CTPS1,H3-3B,JUN,MYH10, CUL5, CPSF7. Strikingly, excessive MEC3 abrogates the carcinogenic functions of miR-624. Importantly, our findings indicate that miR-624 affects some signaling pathway in liver cancer, including Wnt signaling pathway,Hippo signaling pathway,mTOR signaling pathway, Ras signaling pathway,MAPK signaling pathway,PI3K-Akt signaling pathway, erbB signaling pathway. These results provide a basis for the treatment of human liver cancer.

15.
iScience ; 24(11): 103271, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761190

RESUMO

miR-1307 is highly expressed in liver cancer and inhibits methyltransferase protein8. Thereby, miR-1307 inhibits the expression of KDM3A and KDM3B and increases the methylation modification of histone H3 lysine 9, which enhances the expression of endoplasmic-reticulum-related gene CALR. Of note, miR-1307 weakens the binding ability of OSTC to CDK2, CDK4, CyclinD1, and cyclinE and enhances the binding ability of CALR to CDK2, CDK4, CyclinD1, and cyclinE, decreasing of p21WAF1/CIP1, GADD45, pRB, and p18, and decreasing of ppRB. Furthermore, miR-1307 increases the activity of H-Ras, PKM2, and PLK1. Strikingly, miR-1307 reduces the binding ability of OSTC to ATG4 and enhances the binding ability of CALR to ATG4. Therefore, miR-1307 reduces the occurrence of autophagy based on ATG4-LC3-ATG3-ATG7-ATG5-ATG16L1-ATG12-ATG9- Beclin1. In particular, miR-1307 enhances the expression of PAK2, PLK1, PRKAR2A, MYBL1, and Trim44 and inhibits the expression of Sash1 and Smad5 via autophagy. Our observations suggest that miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway.

16.
Mol Ther Nucleic Acids ; 23: 310-323, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33425489

RESUMO

Circular RNA (CircRNA) is a newly identified special class of non-coding RNA (ncRNA) that plays an important regulatory role in the progression of certain diseases. Herein, our results indicate that CircMEG3 is downregulated expression and negatively correlated with the expression of telomerase-related gene Cbf5 in human liver cancer. Moreover, CircMEG3 inhibits the growth of human liver cancer stem cells in vivo and in vitro. CircMEG3 inhibits the expression of m6A methyltransferase METTL3 dependent on HULC. Moreover, CircMEG3 inhibits the expression of Cbf5, a component of telomere synthetase H/ACA ribonucleoprotein (RNP; catalyst RNA pseudouracil modification) through METTL3 dependent on HULC. Thereby, CircMEG3 inhibits telomerase activity and shortens telomere lifespan dependent on HULC and Cbf5 in human liver cancer stem cell. Strikingly, increased Cbf5 abrogates the ability of CircMEG3 to inhibit malignant differentiation of human liver cancer stem cells. In summary, these observations provide important basic information for finding effective liver cancer therapeutic targets.

17.
Stem Cell Res Ther ; 11(1): 518, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256840

RESUMO

BACKGROUND: MEG3 downregulated the expression in several tumors and inhibits human tumorigenesis. But so far, the mechanism of MEG3 in tumorigenesis is still unclear. METHODS: In gene infection, cellular and molecular technologies and tumorigenesis test in vitro and in vivo were performed, respectively. RESULTS: Our results indicate that MEG3 enhances the P53 expression by triggering the loading of P300 and RNA polymerase II onto its promoter regions dependent on HP1α. Moreover, MEG3 increases the methylation modification of histone H3 at the 27th lysine via P53. Furthermore, MEG3 inhibits the expression of TERT by increasing the H3K27me3 in TERT promoter regions, thereby inhibiting the activity of telomerase by reducing the binding of TERT to TERC. Furthermore, MEG3 also increases the expression of TERRA; therefore, the interaction between TERC and TERT was competitively attenuated by increasing the interaction between TERRA and TERT, which inhibits the activity of telomerase in hLCSCs. Strikingly, MEG3 reduces the length of telomere by blocking the formation of complex maintaining telomere length (POT1-Exo1-TRF2-SNM1B) and decreasing the binding of the complex to telomere by increasing the interplay between P53 and HULC. Ultimately, MEG3 inhibits the growth of hLCSCs by reducing the activity of telomerase and attenuating telomeric repeat binding factor 2(TRF2). CONCLUSIONS: Our results demonstrates MEG3 inhibits the occurrence of human liver cancer by blocking telomere, and these findings provide an important insight into the prevention and treatment of human liver cancer.


Assuntos
Neoplasias Hepáticas , RNA Longo não Codificante , Telomerase , Homólogo 5 da Proteína Cromobox , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
18.
Mol Ther Oncolytics ; 17: 471-483, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32490171

RESUMO

miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA