Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Sci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710213

RESUMO

Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.

2.
Gut ; 68(1): 118-129, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29114070

RESUMO

OBJECTIVE: To investigate the molecular function of splicing factor SRSF6 in colorectal cancer (CRC) progression and discover candidate chemicals for cancer therapy through targeting SRSF6. DESIGN: We performed comprehensive analysis for the expression of SRSF6 in 311 CRC samples, The Cancer Genome Atlas and Gene Expression Omnibus (GEO) database. Functional analysis of SRSF6 in CRC was performed in vitro and in vivo. SRSF6-regulated alternative splicing (AS) and its binding motif were identified by next-generation RNA-sequencing and RNA immunoprecipitation sequencing (RIP-seq), which was validated by gel shift and minigene reporter assay. ZO-1 exon23 AS was investigated to mediate the function of SRSF6 in vitro and in vivo. Based on the analysis of domain-specific role, SRSF6-targeted inhibitor was discovered de novoby virtual screening in 4855 FDA-approved drugs and its antitumour effects were evaluated in vitroand in vivo. RESULTS: SRSF6 was frequently upregulated in CRC samples and associated with poor prognosis, which promoted proliferation and metastasis in vitro and in vivo. We identified SRSF6-regulated AS targets and discovered the SRSF6 binding motif. Particularly, SRSF6 regulates ZO-1 aberrant splicing to function as an oncogene by binding directly to its motif in the exon23. Based on the result that SRSF6 RRM2 domain plays key roles in regulating AS and biological function, indacaterol, a ß2-adrenergic receptor agonist approved for chronic obstructive pulmonary disease treatment, is identified as the inhibitor of SRSF6 to suppress CRC tumourigenicity. CONCLUSIONS: SRSF6 functions the important roles in mediating CRC progression through regulating AS, and indacaterol is repositioned as an antitumour drug through targeting SRSF6. ACCESSION NUMBERS: The accession numbers for sequencing data are SRP111763 and SRP111797.


Assuntos
Processamento Alternativo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fosfoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoprecipitação , Indanos/farmacologia , Camundongos , Isoformas de Proteínas , Quinolonas/farmacologia , Análise de Sequência de RNA , Células Tumorais Cultivadas , Regulação para Cima
3.
J Hematol Oncol ; 17(1): 25, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679698

RESUMO

Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Animais
4.
Heliyon ; 10(11): e31320, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841477

RESUMO

Background: collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method: Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result: Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion: our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.

5.
Cancer Lett ; 592: 216903, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38670307

RESUMO

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.


Assuntos
Acetilcoenzima A , Carcinoma Hepatocelular , Quimiocina CXCL1 , Neoplasias Hepáticas , Neutrófilos , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Acetilação , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Armadilhas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos Nus , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Adulto , Pessoa de Meia-Idade , Idoso , Camundongos Endogâmicos BALB C
6.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388466

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

7.
Phenomics ; 3(1): 83-100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36939763

RESUMO

Cancer metastasis is the major cause of cancer-related deaths and accounts for poor therapeutic outcomes. A metastatic cascade is a series of complicated biological processes. N6-methyladenosine (m6A) is the most abundant and conserved epitranscriptomic modification in eukaryotic cells, which has great impacts on RNA production and metabolism, including RNA splicing, processing, degradation and translation. Accumulating evidence demonstrates that m6A plays a critical role in regulating cancer metastasis. However, there is a lack of studies that review the recent advances of m6A in cancer metastasis. Here, we systematically retrieved the functions and mechanisms of how the m6A axis regulates metastasis, and especially summarized the organ-specific liver, lung and brain metastasis mediated by m6A in various cancers. Moreover, we discussed the potential application of m6A modification in cancer diagnosis and therapy, as well as the present limitations and future perspectives of m6A in cancer metastasis. This review provides a comprehensive knowledge on the m6A-mediated regulation of gene expression, which is helpful to extensively understand the complexity of cancer metastasis from a new epitranscriptomic point of view and shed light on the developing novel strategies to anti-metastasis based on m6A alteration.

8.
Front Immunol ; 13: 798022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432310

RESUMO

Background: Neutrophils form extracellular net-like structures called neutrophil extracellular traps (NETs). Emerging evidence has shown that cancer can induce NET formation; however, it is not fully understood how NETs influence cancer biology, and no consensus has been reached on their pro- or antitumor effects. A comprehensive analysis of the global NET-associated gene regulatory network is currently unavailable and is urgently needed. Methods: We systematically explored and discussed NET enrichment, NET-associated gene regulatory patterns, and the prognostic implications of NETs in approximately 8,000 patients across 22 major human cancer types. We identified NET-associated regulatory gene sets that we then screened for NET-associated regulatory patterns that might affect patient survival. We functionally annotated the NET-associated regulatory patterns to compare the biological differences between NET-related survival subgroups. Results: A gene set variation analysis (GSVA) based on 23 major component genes was used to calculate a metric called the NET score. We found that the NET score was closely associated with many important cancer hallmarks, particularly inflammatory responses and epithelial-to-mesenchymal transition (EMT)-induced metastasis. Higher NET scores were related to poor immunotherapy response. Survival analysis revealed that NETs had diverse prognostic impacts among various cancer types. The NET-associated regulatory patterns linked to shorter or longer cancer patient survival were distinct from each other. Functional analysis revealed that more of the NET-associated regulatory genes linked to poor cancer survival were associated with extracellular matrix (ECM) remodeling and pan-cancerous risk factors. SPP1 was found to be highly expressed and correlated with NET formation in cancers with poor survival. We also found that the co-upregulation of NET formation and SPP1 expression was closely linked to increased EMT and poor survival, that SPP1 influenced NET-induced malignant capacity, and that SPP1 overproduction induced a robust formation of metastatic-promoting NETs. Conclusion: NETs were common across cancers but displayed a diverse regulatory pattern and outcome readouts in different cancer types. SPP1 is potentially the key to NET-related poor outcomes.


Assuntos
Armadilhas Extracelulares , Neoplasias , Armadilhas Extracelulares/metabolismo , Humanos , Imunoterapia , Neoplasias/patologia , Neutrófilos/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA