Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 13: 64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280372

RESUMO

BACKGROUND: Bisulfite addition is an important H2 photoproduction strategy that removes O2 and activates hydrogenase. The pH values of cell cultures can change the ratio of bisulfite to sulfite, which may affect H2 photoproduction. However, little is known regarding the pH effect of bisulfite addition on H2 photoproduction and relevant underlying mechanism. RESULTS: Here, changes in H2 photoproduction with different initial extracellular pH values showed a parabolic distribution and a pH of 8.0 is an optimal value for H2 photoproduction in Chlamydomonas reinhardtii cells treated with bisulfite. Compared to the growth pH (pH 7.3), increased photoproduction of H2 at this optimal pH was primarily caused by a relatively high residual activity of photosystem II (PSII), which provides a relatively plentiful source of electrons for H2 photoproduction. Such increased H2 photoproduction was most likely a result of decreased the ratio of bisulfite to sulfite, consistent with the result that the toxicity of bisulfite on PSII was much more than that of sulfite. This possibility was corroborated by the result that treatment with a combination of 7 mM bisulfite and 6 mM sulfite further enhanced H2 photoproduction compared with 13 mM bisulfite alone. CONCLUSIONS: Collectively, our findings provide novel mechanistic insights into pH-dependent H2 photoproduction in C. reinhardtii cells treated with bisulfite, and demonstrate that sulfite addition is another important strategy for H2 photoproduction, just like bisulfite addition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA