Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(8): 229, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964102

RESUMO

This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.


Assuntos
Solventes Eutéticos Profundos , Absorção Cutânea , Colchicina/metabolismo , Colchicina/farmacologia , Borracha/metabolismo , Borracha/farmacologia , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
2.
J Cancer Res Clin Oncol ; 150(3): 149, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512527

RESUMO

BACKGROUND: Neutrophils are considered to be crucial players in the initiation and progression of cancer. However, the complex relationship between neutrophils and cancer prognosis remains elusive, mainly due to the significant plasticity and diversity exhibited by these immune cells. METHODS: As part of our thorough investigation, we examined 38 Neutrophils-Related Genes (NRGs) and the associated copy number variations (CNV), somatic mutations, and gene expression patterns in relation to triple negative breast cancer (TNBC). The interactions between these genes, their biological roles, and their possible prognostic significance were then examined. With the NRGs as our basis, we applied Lasso and Cox regression analyses to create a predictive model for overall survival (OS). Furthermore, TNBC tissue and a public database were used to assess changes in MYO1D expression (MYO1D is characterized as a member of the myosin-I family, a group of motor proteins based on actin), its connection to neutrophil infiltration, and the clinical importance of MYO1D in TNBC. RESULTS: Four neutrophil-related genes were included in the development of a prognostic model based on neutrophils. The model was further shown to be an independent predicted factor for overall survival by multivariate Cox regression analysis. According to this study, neutrophil subtype B as well as gene subtype B, were associated with activated cancer immunity and poor prognosis of TNBC patients. Furthermore, considering that poor OS was linked to increased MYO1D expression, MYO1D was increased in TNBC tissues and associated with neutrophil infiltration. In vitro experiments also confirmed that MYO1D facilitates breast cancer invasion and metastasis. CONCLUSION: Based on the degree of gene expression linked to neutrophils, a unique prognostic model was created. MYO1D could be a potential prognostic biomarker in TNBC patients and also a prospective target for therapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neutrófilos/patologia , Variações do Número de Cópias de DNA , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA