Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(9): 4160-4167, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38388157

RESUMO

A facile method is developed to efficiently prepare metamagnetic mercury thiodichromite (HgCr2S4, HCS) polycrystals and single crystals, and their transport properties are studied. The resistivity of the as-prepared HCS polycrystal shows a semiconducting behavior and no magnetic field dependence in the whole temperature range. In contrast, the annealing treatment of the HCS polycrystal induces gigantic changes: an insulator-metal transition is driven by a magnetic field of 5 T, leading to colossal magnetoresistance (CMR) as high as ∼104. The HCS single crystal grown by a newly developed facile method displays similar properties with a larger CMR up to 106-107. First-principles calculation demonstrates a large spin splitting of band structures, providing the possibility of magnetic polaron existence, which is further evidenced by electron spin resonance spectra. Thus, the insulator-metal transition and CMR can be explained in a magnetic polaronic scenario. This work opens a new window for CMR-based spintronics.

2.
Small ; 18(47): e2204380, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36135779

RESUMO

Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.

3.
Mater Horiz ; 9(2): 559-576, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779810

RESUMO

Two-dimensional (2D) magnetic crystals show many fascinating physical properties and have potential device applications in many fields. In this paper, the preparation, physical properties and device applications of 2D magnetic atomic crystals are reviewed. First, three preparation methods are presented, including chemical vapor deposition (CVD) molecular beam epitaxy (MBE) and single-crystal exfoliation. Second, physical properties of 2D magnetic atomic crystals, including ferromagnetism, antiferromagnetism, magnetic regulation and anomalous Hall effect are presented. Third, the application of 2D magnetic atomic crystals in heterojunctions reluctance and other aspects are briefly introduced. Finally, the future development direction and possible challenges of 2D magnetic atomic crystals are briefly addressed.

4.
Adv Sci (Weinh) ; 9(1): e2103173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705336

RESUMO

The combination of semiconductivity and tunable ferromagnetism is pivotal for electrical control of ferromagnetism and next-generation low-power spintronic devices. However, Curie temperatures (TC ) for most traditional intrinsic ferromagnetic semiconductors (≤200 K) and recently discovered two-dimensional (2D) ones (<70 K) are far below room temperature. 2D van der Waals (vdW) semiconductors with intrinsic room-temperature ferromagnetism remain elusive considering the unfavored 2D long-range ferromagnetic order indicated by Mermin-Wagner theorem. Here, vdW semiconductor Crx Ga1- x Te crystals exhibiting highly tunable above-room-temperature ferromagnetism with bandgap 1.62-1.66 eV are reported. The saturation magnetic moment (Msat ) of Crx Ga1- x Te crystals can be effectively regulated up to ≈5.4 times by tuning Cr content and ≈75.9 times by changing the thickness. vdW Crx Ga1- x Te ultrathin semiconductor crystals show robust room-temperature ferromagnetism with the 2D quantum confinement effect, enabling TC 314.9-329 K for nanosheets, record-high for intrinsic vdW 2D ferromagnetic semiconductors. This work opens an avenue to room-temperature 2D vdW ferromagnetic semiconductor for 2D electronic and spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA