Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15539-15546, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38756083

RESUMO

Spin current generation from charge current in nonmagnetic materials promises an energy-efficient scheme for manipulating magnetization in spintronic devices. In some asymmetric two-dimensional (2D) materials, the Rashba and valley effects coexist owing to strong spin-orbit coupling (SOC), which induces the spin Hall effect due to spin-momentum locking of both effects. Herein, we propose a new Janus structure MoSiAs2Se with both valley physics and the Rashba effect and reveal an effective way to modulate the properties of this structure. The results demonstrated that applying an external electric field is an effective means to modulating the electronic properties of MoSiAs2Se, leading to both type I-II phase transitions and semiconductor-metal phase transitions. Furthermore, the coexistence of the Rashba and valley effects in monolayer MoSiAs2Se contributes to the spin Hall effect (SHE). The magnitude and direction of spin Hall conductivity can also be manipulated with an out-of-plane electric field. Our results enrich the physics and materials of the Rashba and valley systems, opening new opportunities for the applications of 2D Janus materials in spintronic devices.

2.
Phys Chem Chem Phys ; 26(17): 13087-13093, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628113

RESUMO

The valley polarization, induced by the magnetic proximity effect, in monolayer transition metal dichalcogenides (TMDCs), has attracted significant attention due to the intriguing fundamental physics. However, the enhancement and modulation of valley polarization for real device applications is still a challenge. Here, using first-principles calculations we investigate the valley polarization properties of monolayer TMDCs CrS2 and CrSe2 and how to enhance the valley polarization by constructing Janus CrSSe (with an internal electric field) and modulate the polarization in CrSSe by applying external electric fields. Janus CrSSe exhibits inversion symmetry breaking, internal electric field, spin-orbit coupling, and compelling spin-valley coupling. A magnetic substrate of the MnO2 monolayer can induce a modest magnetic moment in CrSe2, CrSe2, and CrSSe. Notably, the Janus structure with an internal electric field has a much larger valley p compared with its non-Janus counterparts. Moreover, the strength of valley polarization can be further modulated by applying external electric fields. These findings suggest that Janus materials hold promise for designing and developing advanced valleytronic devices.

3.
Proc Natl Acad Sci U S A ; 117(12): 6362-6369, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161125

RESUMO

Shrinking the size of a bulk metal into nanoscale leads to the discreteness of electronic energy levels, the so-called Kubo gap δ. Renormalization of the electronic properties with a tunable and size-dependent δ renders fascinating photon emission and electron tunneling. In contrast with usual three-dimensional (3D) metal clusters, here we demonstrate that Kubo gap δ can be achieved with a two-dimensional (2D) metallic transition metal dichalcogenide (i.e., 1T'-phase MoTe2) nanocluster embedded in a semiconducting polymorph (i.e., 1H-phase MoTe2). Such a 1T'/1H MoTe2 nanodomain resembles a 3D metallic droplet squeezed in a 2D space which shows a strong polarization catastrophe while simultaneously maintaining its bond integrity, which is absent in traditional δ-gapped 3D clusters. The weak screening of the host 2D MoTe2 leads to photon emission of such pseudometallic systems and a ballistic injection of carriers in the 1T'/1H/1T' homojunctions which may find applications in sensors and 2D reconfigurable devices.

4.
Phys Chem Chem Phys ; 22(16): 8713-8718, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270831

RESUMO

Critical topological phases, possessing flat bands, provide a platform to study unique topological properties and transport phenomena under a many-body effect. Here, we propose that critical nodal points and nodal lines or rings can be found in Kagome lattices. After the C3 rotation symmetry of a single-layer Kagome lattice is eliminated, a quadratic nodal point splits into two critical nodal points. When the layered Kagome lattices are stacked into a three-dimensional (3D) structure, critical nodal lines or rings can be generated by tuning the interlayer coupling. Furthermore, we use Kagome graphene as an example to identify that these critical phases could be obtained in real materials. We also discuss flat-band-induced ferromagnetism. It is found that the flat band splits into two spin-polarized bands by hole-doping, and as a result the Dirac-type critical phases evolve into Weyl-type phases.

5.
Nanotechnology ; 30(47): 475401, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31430722

RESUMO

Carbon atomic chain, linear benzene polymers, and carbon nanothreads are all one-dimensional (1D) ultrathin carbon structures. They possess excellent electronic and mechanical properties; however, their thermal transport properties have been rarely explored. Here, we systematically study their thermal conductance by combining the nonequilibrium Green's function and force field methods. The thermal conductance varies from 0.24 to 1.00 nW K-1 at 300 K, and phonon transport in the linear benzene polymers and carbon nanothreads is strongly dependent on the connectivity styles between the benzene rings. We propose a simple 1D model, namely force-constant model, that explains the complicated transport processes in these structures. Our study not only reveals intrinsic mechanisms of phonon transport in these carbon structures, but also provides an effective method to analyze thermal properties of other 1D ultrathin structures made of only several atomic chains.

6.
Phys Rev Lett ; 120(10): 106403, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570330

RESUMO

The unique properties of topological semimetals have strongly driven efforts to seek for new topological phases and related materials. Here, we identify a critical condition for the existence of intersecting nodal rings (INRs) in symmorphic crystals, and further classify all possible kinds of INRs which can be obtained in the layered semiconductors with Amm2 and Cmmm space group symmetries. Several honeycomb structures are suggested to be topological INR semimetals, including layered and "hidden" layered structures. Transitions between the three types of INRs, named as α, ß, and γ type, can be driven by external strains in these structures. The resulting surface states and Landau-level structures, more complicated than those resulting from a simple nodal loop, are also discussed.

7.
Phys Chem Chem Phys ; 20(36): 23500-23506, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30183022

RESUMO

Topological metals/semimetals (TMs) have emerged as a new frontier in the field of quantum materials. A few two-dimensional (2D) boron sheets have been suggested as Dirac materials, however, to date TMs made of three-dimensional (3D) boron structures have not been found. Herein, by means of systematic first principles computations, we discovered that a rather stable 3D boron allotrope, namely 3D-α' boron, is a nodal-chain semimetal. In momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain. This 3D-α' boron can be formed by stacking 2D wiggle α' boron sheets, which are also nodal-ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 3D and 2D boron structures are related to the π bonds between boron atoms, however, the bonding characteristics are different from those in the 2D and 3D carbon structures.

8.
Phys Chem Chem Phys ; 20(32): 21177-21183, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30083674

RESUMO

Coexistence of topological elements in topological metals/semimetals (TMs) has gradually attracted attention. However, non-topological factors always interfere with the Fermi surface and cover interesting topological properties. Here, we find that Ba3Si4 is a "clean" TM which contains coexisting nodal-chain networks, intersecting nodal rings (INRs) and triple points, in the absence of spin-orbit coupling (SOC). Moreover, the nodal rings in the topological phase exhibit diverse types: from type-I and type-II to type-III rings according to band dispersions. All of the topological elements are generated by crossings of three energy bands, and thus they are correlated rather than mutually independent. When some structural symmetries are eliminated by an external strain, the topological phase evolves into another phase including a Hopf link, a one-dimensional nodal chain and new INRs.

9.
Phys Chem Chem Phys ; 19(5): 3820-3825, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28102377

RESUMO

A semi-Dirac semimetal is a material that exhibits linear band dispersion in one direction and quadratic band dispersion in the orthogonal direction and, therefore, hosts massless and massive fermions at the same point in the momentum space. While a number of interesting physical properties have been predicted in semi-Dirac semimetals, it has been rare to realize such materials in condensed matter. Based on the fact that some honeycomb materials are easily oxidized or chemically absorb other atoms, here, we theoretically propose an approach of modifying their band structures by covalent addition of group-VI elements and strain engineering. We predict a silicene oxide with the chemical formula of Si2O to be a candidate semi-Dirac semimetal. Our approach is backed by the analysis and understanding of the effect of p-orbital frustration on the band structure of graphene-like materials.

10.
Nanotechnology ; 27(44): 445703, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27669055

RESUMO

Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green's function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene's. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

11.
Nano Lett ; 15(10): 6974-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26426355

RESUMO

Carbon allotropes are subject of intense investigations for their superb structural, electronic, and chemical properties, but not for topological band properties because of the lack of strong spin-orbit coupling (SOC). Here, we show that conjugated p-orbital interactions, common to most carbon allotropes, can in principle produce a new type of topological band structure, forming the so-called Weyl-like semimetal in the absence of SOC. Taking a structurally stable interpenetrated graphene network (IGN) as example, we show, by first-principles calculations and tight-binding modeling, that its Fermi surface is made of two symmetry-protected Weyl-like loops with linear dispersion along perpendicular directions. These loops are reduced to Weyl-like points upon breaking of the inversion symmetry. Because of the topological properties of these band-structure anomalies, remarkably, at a surface terminated by vacuum there emerges a flat band in the loop case and two Fermi arcs in the point case. These topological carbon materials may also find applications in the fields of catalysts.

12.
Nanotechnology ; 26(37): 375402, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26313739

RESUMO

Heat dissipation is a very critical problem for designing nano-functional devices, including MoS2/graphene heterojunctions. In this paper we investigate thermal transport in MoS2/graphene hybrid nanosheets under various heating conditions, by using molecular dynamics simulation. Diverse transport processes and characteristics, depending on the conducting layers, are found in these structures. The thermal conductivities can be tuned by interlayer coupling, environment temperature, and interlayer overlap. The highest thermal conductivity at room temperature is achieved as more than 5 times of that of single-layer MoS2 when both layers are heated and 100% overlapped. Different transport mechanisms in the hybrid nanosheets are explained by phonon density of states, temperature distribution, and interlayer thermal resistance. Our results could not only provide clues to master the heat transport in functional devices based on MoS2/graphene heterojunctions, but are also useful for analyzing thermal transport in other van der Waals hybrid nanosheets.

13.
Phys Chem Chem Phys ; 17(17): 11211-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25830175

RESUMO

Three single-layer tetragonal silicon carbides (SiCs), termed as T1, T2 and T3, are proposed by density functional theory (DFT) computations. Although the three structures have the same topological geometry, they show versatile electronic properties from a semiconductor (T1), a semimetal (T2) to a metal (T3). The versatile properties originate from the rich bonds between Si and C atoms. The nanoribbons of the three SiCs also show interesting electronic properties. Especially, T1 nanoribbons possess exotic edge states, where electrons only distribute on one edge's silicon or carbon atoms. The band gaps of the T1 nanoribbons are constant because of no interaction between the edge states.

14.
Phys Chem Chem Phys ; 17(21): 14083-7, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25959535

RESUMO

Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.

15.
Phys Rev Lett ; 113(8): 085501, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192104

RESUMO

A three-dimensional elemental carbon kagome lattice, made of only fourfold-coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60° bond angles in the triangle rings, widely perceived to be energetically unfavorable, the carbon kagome lattice is found to display exceptional stability comparable to that of C(60). The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable to or smaller than those of Si.

16.
Nanoscale ; 16(28): 13543-13550, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38949270

RESUMO

In carbon allotropes, a series of topological semi-metals have been predicted, but both novel electronic properties and mechanical characteristics, e.g., a negative Poisson's ratio (NPR), are rarely discovered in the same sp2 type system. Here, a new three-dimensional carbon network, named WZGN, constructed from distorted one-dimensional zigzag graphene nanoribbons is proposed. The stability of the system is fully ensured by the phonon dispersion, AIMD simulation, and binding energy calculations. Besides, it is found that the system holds both topologically protected nodal line semi-metal properties together with an NPR property. Especially, the value of the NPR can exceed -0.36 when 21% uniaxial tensile strain along the c'-direction is applied. Our findings point out that nodal line semi-metals can be compatible with intrinsic NPR properties in a wide strain range in carbon systems with sp2 hybridization, suggesting possible applications in mechanical and electronics fields.

17.
Nanoscale ; 15(19): 8825-8831, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37114430

RESUMO

Most special two-dimensional (2D) lattices, such as Kagome and Lieb lattices, can only generate a single flat band. Here, we propose a 2D lattice named a quadrangular-star lattice (QSL). It can produce coupling double flat bands, which indicates that there exists stronger electronic correlation than in the systems with only one flat band. Moreover, we suggest some 2D carbon allotropes (e.g. CQSL-12 and CQSL-20), made of carbon rings and dimers, to realize QSL in real materials. By calculating the band structures of the carbon materials, we find that there are indeed two coupling flat bands around the Fermi level. Hole doping leads to strong magnetism of the carbon materials. When the two flat bands are half filled, i.e., in the cases of one- and three-hole doping, the magnetic momentums mainly distribute on the atoms of the carbon rings and dimers, respectively. Even in the case of two-hole doping, the carbon structure also shows ferromagnetic characteristics, and the total magnetic moments are larger than the former two cases.

18.
Nanoscale ; 14(24): 8797-8805, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35678526

RESUMO

7-Atomic-layer materials have attracted much attention recently because of their rich structures and more-abundant properties than 3- and 5-atomic-layer materials. However, the thermoelectric properties of the new monolayer materials have not been explored yet. Here, we investigate the thermoelectric conversion efficiency of a 7-atomic-layer structure ZrGe2N4, which is selected from a series of 7-atomic-layer structures according to their stabilities and thermoelectric properties. The results indicate that this material is an excellent candidate for high-performance thermoelectric materials. Its figure of merit ZT value is close to 4.0 at high temperature. The high efficiency originates from two factors: one is the lower thermal conductivity of ZrGe2N4 and the other is the decoupling of electron and phonon transport in the 7-atomic-layer structures.

19.
Nanotechnology ; 21(24): 245701, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20484794

RESUMO

The thermal transport properties of hexagonal boron nitride nanoribbons (BNNRs) are investigated. By calculating the phonon spectrum and thermal conductance, it is found that the BNNRs possess excellent thermal transport properties. The thermal conductance of BNNRs can be comparable to that of graphene nanoribbons (GNRs) and even exceed the latter below room temperature. A fitting formula is obtained to describe the features of thermal conductance in BNNRs, which reveals a critical role of the T(1.5) dependence in determining the thermal transport. In addition, an obviously anisotropic thermal transport phenomenon is observed in the nanoribbons. The thermal conductivity of zigzag-edged BNNRs is shown to be about 20% larger than that of armchair-edged nanoribbons at room temperature. The findings indicate that the BNNRs can be applied as important components of excellent thermal devices.

20.
J Phys Chem Lett ; 9(11): 2751-2756, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29730926

RESUMO

The interesting properties of Kagome bands, consisting of Dirac bands and a flat band, have attracted extensive attention. However, materials with only one Kagome band around the Fermi level cannot possess physical properties of Dirac Fermions and strong correlated Fermions simultaneously. Here, we propose a new type of band structure, double Kagome bands, which can realize coexistence of the two kinds of Fermions. Moreover, the new band structure is found to exist in a new two-dimensional material, phosphorus carbide P2C3. The carbide material shows good stability and unusual electronic properties. Strong magnetism appears in the structure by hole doping of the flat band, which results in spin splitting of the Dirac bands. The edge states induced by Dirac and flat bands coexist on the Fermi level, indicating outstanding transport characteristics. In addition, a possible route to experimentally grow P2C3 on some suitable substrates such as the Ag(111) surface is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA