Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 67(3): 334-345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687143

RESUMO

Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.


Assuntos
Imunoglobulina A Secretora , Doença Pulmonar Obstrutiva Crônica , Receptores de Imunoglobulina Polimérica , Animais , Haemophilus influenzae/enzimologia , Humanos , Imunoglobulina A Secretora/metabolismo , Elastase de Leucócito/metabolismo , Camundongos , Proteólise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Sistema Respiratório/metabolismo
2.
Mucosal Immunol ; 14(2): 431-442, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32968197

RESUMO

Although activation of adaptive immunity is a common pathological feature of chronic obstructive pulmonary disease (COPD), particularly during later stages of the disease, the underlying mechanisms are poorly understood. In small airways of COPD patients, we found that localized disruption of the secretory immunoglobulin A (SIgA)-containing mucosal immunobarrier correlated with lymphocyte accumulation in airway walls and development of tertiary lymphoid structures (TLS) around small airways. In SIgA-deficient mice, we observed bacterial invasion into the airway epithelial barrier with lymphocytic infiltration and TLS formation, which correlated with the progression of COPD-like pathology with advanced age. Depletion of either CD4+ or CD8+ T lymphocytes reduced the severity of emphysema in SIgA-deficient mice, indicating that adaptive immune activation contributes to progressive lung destruction. Further studies revealed that lymphocyte infiltration into the lungs of SIgA-deficient mice was dependent on monocyte-derived dendritic cells (moDCs), which were recruited through a CCR2-dependent mechanism in response to airway bacteria. Consistent with these results, we found that moDCs were increased in lungs of COPD patients, along with CD4+ and CD8+ effector memory T cells. Together, these data indicate that endogenous bacteria in SIgA-deficient airways orchestrate a persistent and pathologic T lymphocyte response through monocyte recruitment and moDC differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoglobulina A/metabolismo , Monócitos/citologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Estruturas Linfoides Terciárias/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Enfisema , Feminino , Técnicas de Inativação de Genes , Humanos , Deficiência de IgA , Imunoglobulina A/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/genética
3.
Front Immunol ; 9: 1255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915594

RESUMO

Identifying molecules that are differentially expressed in encephalitogenic T cells is critical to the development of novel and specific therapies for multiple sclerosis (MS). In this study, IL-3 was identified as a molecule highly expressed in encephalitogenic Th1 and Th17 cells, but not in myelin-specific non-encephalitogenic Th1 and Th17 cells. However, B10.PL IL-3-deficient mice remained susceptible to experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Furthermore, B10.PL myelin-specific T cell receptor transgenic IL-3-/- Th1 and Th17 cells were capable of transferring EAE to wild-type mice. Antibody neutralization of IL-3 produced by encephalitogenic Th1 and Th17 cells failed to alter their ability to transfer EAE. Thus, IL-3 is highly expressed in myelin-specific T cells capable of inducing EAE compared to activated, non-encephalitogenic myelin-specific T cells. However, loss of IL-3 in encephalitogenic T cells does not reduce their pathogenicity, indicating that IL-3 is a marker of encephalitogenic T cells, but not a critical element in their pathogenic capacity.


Assuntos
Autoimunidade , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Interleucina-3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Alelos , Animais , Autoimunidade/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Genótipo , Interleucina-3/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA