Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629794

RESUMO

Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level, and consequently affecting the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.

2.
Ann Bot ; 130(5): 717-735, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35972226

RESUMO

BACKGROUND AND AIMS: The North China Plain, the highest winter-wheat-producing region of China, is seriously threatened by drought. Traditional irrigation wastes a significant amount of water during the sowing season. Therefore, it is necessary to study the drought resistance of wheat during germination to maintain agricultural ecological security. From several main cultivars in the North China Plain, we screened the drought-resistant cultivar JM47 and drought-sensitive cultivar AK58 during germination using the polyethylene glycol (PEG) drought simulation method. An integrated analysis of the transcriptome and metabolomics was performed to understand the regulatory networks related to drought resistance in wheat germination and verify key regulatory genes. METHODS: Transcriptional and metabolic changes were investigated using statistical analyses and gene-metabolite correlation networks. Transcript and metabolite profiles were obtained through high-throughput RNA-sequencing data analysis and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, respectively. KEY RESULTS: A total of 8083 and 2911 differentially expressed genes (DEGs) and 173 and 148 differential metabolites were identified in AK58 and JM47, respectively, under drought stress. According to the integrated analysis results, mammalian target of rapamycin (mTOR) signalling was prominently enriched in JM47. A decrease in α-linolenic acid content was consistent with the performance of DEGs involved in jasmonic acid biosynthesis in the two cultivars under drought stress. Abscisic acid (ABA) content decreased more in JM47 than in AK58, and linoleic acid content decreased in AK58 but increased in JM47. α-Tocotrienol was upregulated and strongly correlated with α-linolenic acid metabolism. CONCLUSIONS: The DEGs that participated in the mTOR and α-linolenic acid metabolism pathways were considered candidate DEGs related to drought resistance and the key metabolites α-tocotrienol, linoleic acid and l-leucine, which could trigger a comprehensive and systemic effect on drought resistance during germination by activating mTOR-ABA signalling and the interaction of various hormones.


Assuntos
Secas , Triticum , Triticum/fisiologia , Germinação , Transcriptoma , Ácido alfa-Linolênico/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Linoleico/metabolismo , Metabolômica , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886923

RESUMO

Excessive input of nitrogen fertilizer not only causes a great waste of resources but brings about a series of ecological and environmental problems. Although Small Auxin Up-regulated RNAs (SAURs) participate in diverse biological processes, the function of SAURs in the nitrogen starvation response has not been well-studied. Here, we identified 308 TaSAURs in wheat and divided them into 10 subfamilies. The promoter regions of most TaSAURs contain hormone responsive elements, and their expression levels change under the treatment of different hormones, such as IAA, MeJA, and ABA. Interestingly, overexpression of one of the TaSAUR family members, a nitrogen starvation responsive gene, TaSAUR66-5B, can promote the growth of Arabidopsis and wheat roots. In addition, overexpression of TaSAUR66-5B in Arabidopsis up-regulates the expression levels of auxin biosynthesis related genes, suggesting that overexpression TaSAUR66-5B may promote root growth by increasing the biosynthesis of auxin. Furthermore, overexpression of TaSAUR66-5B in wheat can increase the biomass and grain yields of transgenic plants, as well as the nitrogen concentration and accumulation of both shoots and grains, especially under low nitrogen conditions. This study provides important genomic information of the TaSAUR gene family and lays a foundation for elucidating the functions of TaSAURs in improving nitrogen utilization efficiency in wheat.


Assuntos
Arabidopsis , Triticum , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
4.
BMC Plant Biol ; 20(1): 192, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375650

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have several known functions involving various biological regulatory processes in plant. However, the possible roles of lncRNAs during peanut seed development have not been fully explored. RESULTS: In this study, two peanut recombinant inbred lines (RIL8) that differ in seed size were used to investigate comprehensive lncRNA profiles derived from the seed development at 15 and 35 days after flowering (DAF). We identified a total of 9388 known and 4037 novel lncRNAs, from which 1437 were differentially expressed lncRNAs. Interestingly, the expression patterns of a number of lncRNAs can be very different between two closely related inbred lines and these lncRNAs were expressed predominantly in only one RIL at 35 DAF. Some differentially expressed lncRNAs were found related to putative cis-acting target genes and predicted to be involved in transcription, transport, cell division, and plant hormone biosynthesis. The expression patterns of several representative lncRNAs and 12 protein-coding genes were validated by qPCR. Same expression pattern was observed between most lncRNAs and their target genes. 11 lncRNAs, XR_001593099.1, MSTRG.18462.1, MSTRG.34915.1, MSTRG.41848.1, MSTRG.22884.1, MSTRG.12404.1, MSTRG.26719.1, MSTRG.35761.1, MSTRG.20033.1, MSTRG.13500.1, and MSTRG.9304.1 and their cis-acting target genes may play key roles in peanut seed development. CONCLUSIONS: These results provided new information on lncRNA-mediated regulatory roles in peanut seed development, contributing to the comprehensive understanding of the molecular mechanisms involved in peanut seed development.


Assuntos
Arachis/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia , Sementes/genética , Arachis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/biossíntese , RNA Longo não Codificante/genética , RNA de Plantas/genética , Sementes/crescimento & desenvolvimento
5.
BMC Plant Biol ; 19(1): 193, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072347

RESUMO

BACKGROUND: Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization. METHODS: To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 µg·mL- 1) to suppress the stress. Under three treatment groups (Control, DTT and DTT + TUDCA), we firstly monitored the morphological, physiological and cytological changes of wheat seedlings. Then we collected leaf samples from each group for RNA extraction, library construction and RNA sequencing on an Illumina Hiseq platform. The sequencing data was then validated by qRT-PCR. RESULTS: Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses. CONCLUSIONS: We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transcriptoma/genética , Triticum/genética , Triticum/fisiologia , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Ácido Tauroquenodesoxicólico/farmacologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triticum/anatomia & histologia
6.
Plant Biotechnol J ; 17(8): 1527-1537, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30628157

RESUMO

As members of the basic helix-loop-helix transcription factor families, phytochrome-interacting factors regulate an array of developmental responses ranging from seed germination to plant growth. However, little is known about their roles in modulating grain development. Here, we firstly analyzed the expression pattern of rice OsPIL genes in grains and found that OsPIL15 may play an important role in grain development. We then generated knockout (KO) OsPIL15 lines in rice using CRISPR/Cas9 technology, the silencing expression of OsPIL15 led to increased numbers of cells, which thus enhanced grain size and weight. Moreover, overexpression and suppression of OsPIL15 in the rice endosperm resulted in brown rice showing grain sizes and weights that were decreased and increased respectively. Further studies indicated that OsPIL15 binds to N1-box (CACGCG) motifs of the purine permease gene OsPUP7 promoter. Measurement of isopentenyl adenosine, a bioactive form of cytokinin (CTK), revealed increased contents in the OsPIL15-KO spikelets compared with the wild-type. Overall, our results demonstrate a possible pathway whereby OsPIL15 directly targets OsPUP7, affecting CTK transport and thereby influencing cell division and subsequent grain size. These findings provide a valuable insight into the molecular functions of OsPIL15 in rice grains, highlighting a useful genetic improvement leading to increased rice yield.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Nucleobases/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Proteínas de Plantas/genética
7.
Biol Res ; 52(1): 14, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894225

RESUMO

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Triticum/genética , Fenótipo , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/fisiologia , Triticum/metabolismo
8.
Biol Res ; 51(1): 43, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390705

RESUMO

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA/isolamento & purificação , Estresse Fisiológico/fisiologia , Triticum/crescimento & desenvolvimento , RNA/metabolismo , RNA Circular , Triticum/fisiologia
9.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545152

RESUMO

Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.


Assuntos
Adaptação Fisiológica , Secas , Inativação Gênica , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Proteômica/métodos , Triticum/metabolismo , Triticum/fisiologia , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Triticum/genética
10.
BMC Plant Biol ; 15: 21, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623724

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer different levels of dehydration stress tolerance in different wheat genotypes are unclear. RESULTS: We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant, and Zhengyin1, which is drought-susceptible. Using a deep-sequencing method, we identified 367 differentially expressed miRNAs (including 46 conserved miRNAs and 321 novel miRNAs) and compared their expression levels in the two genotypes. Among them, 233 miRNAs were upregulated and 10 were downregulated in both wheat genotypes after dehydration stress. Interestingly, 13 miRNAs exhibited opposite patterns of expression in the two wheat genotypes, downregulation in the drought-tolerant cultivar and upregulation in the drought-susceptible cultivar. We also identified 111 miRNAs that were expressed predominantly in only one or the other genotype after dehydration stress. We verified the expression patterns of a number of representative miRNAs using qPCR analysis and northern blot, which produced results consistent with those of the deep-sequencing method. Moreover, monitoring the expression levels of 10 target genes by qPCR analysis revealed negative correlations with the levels of their corresponding miRNAs. CONCLUSIONS: These results indicate that differentially expressed patterns of miRNAs between these two genotypes may play important roles in dehydration stress tolerance in wheat and may be a key factor in determining the levels of stress tolerance in different wheat genotypes.


Assuntos
Dessecação , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Triticum/fisiologia , China , Secas , Genótipo , MicroRNAs/metabolismo , Estrutura Secundária de Proteína , Estresse Fisiológico , Triticum/genética
11.
Neural Regen Res ; 18(4): 814-818, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204848

RESUMO

Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain. Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic. However, no reports have investigated the underlying mechanisms, and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date. In this study, we established a rat model of left sciatic nerve transfection, and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle. Results showed that, compared with rats subjected to nerve stump implantation inside the muscle, rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons, lower expressions of the fibrosis marker α-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump, lower autophagy behaviors, lower expressions of c-fos and substance P, higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia. These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump.

12.
Front Neurosci ; 16: 914344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161173

RESUMO

Background: Long-term delayed reconstruction of injured peripheral nerves always results in poor recovery. One important reason is retrograde cell death among injured sensory neurons of dorsal root ganglia (DRG). A regenerative peripheral nerve interface (RPNI) was capable of generating new synaptogenesis between the proximal nerve stump and free muscle graft. Meanwhile, sensory receptors within the skeletal muscle can also be readily reinnervated by donor sensory axons, which allows the target muscles to become sources of sensory information for function reconstruction. To date, the effect of RPNI on injured sensory neurons is still unclear. Here, we aim to investigate the potential neuroprotective role of RPNI on sensory DRG neurons after sciatic axotomy in adult rats. Materials and methods: The sciatic nerves of sixty rats were transected. The rats were randomly divided into three groups following this nerve injury: no treatment (control group, n = 20), nerve stump implantation inside a fully innervated muscle (NSM group, n = 20), or nerve stump implantation inside a free muscle graft (RPNI group, n = 20). At 8 weeks post-axotomy, ipsilateral L4 and L5 DRGs were harvested in each group. Toluidine blue staining was employed to quantify the neuronal densities in DRGs. The neuronal apoptosis index was quantified with TUNEL assay. Western blotting was applied to measure the expressions of Bax, Bcl-2, and neurotrophins (NTs) in ipsilateral DRGs. Results: There were significantly higher densities of neurons in ipsilateral DRGs of RPNI group than NSM and control groups at 8 weeks post-axotomy (p < 0.01). Meanwhile, neuronal apoptosis index and the expressions of pro-apoptotic Bax within the ipsilateral DRGs were significantly lower in the RPNI group than those in the control and NSM groups (p < 0.05), while the opposite result was observed in the expression of pro-survival Bcl-2. Furthermore, the expressions of NGF, NT-3, BDNF, and GDNF were also upregulated in the ipsilateral DRGs in the RPNI group (p < 0.01). Conclusion: The present results demonstrate that RPNI could prevent neuronal loss after peripheral axotomy. And the neuroprotection effect has a relationship with the upregulation of NTs in DRGs, such as NGF, NT-3, BDNF, and GDNF. These findings provide an effective therapy for neuroprotection in the delayed repair of the peripheral nerve injury.

13.
Plants (Basel) ; 9(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316652

RESUMO

Metabolomics is an effective biotechnological tool that can be used to attain comprehensive information on metabolites. In this study, the profiles of metabolites produced by wheat seedlings in response to drought stress were investigated using an untargeted approach with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to determine various physiological processes related to drought tolerance from the cross between drought-tolerant genotype (HX10) and drought-sensitive genotype (YN211). The current study results showed that under drought stress, HX10 exhibited higher growth indices than YN211. After drought stress treatment, a series of phenolics accumulated higher in HX10 than in YN211, whereas the amount of thymine, a pyrimidine, is almost 13 folds of that in YN211. These metabolites, as well as high levels of different amino acids, alkaloids, organic acids, and flavonoids in the drought treated HX10 could help to explain its strong drought-tolerant capacity. The current study explored the understanding of the mechanisms involved in the drought response of wheat seedling; these metabolome data could also be used for potential QTL or GWAS studies to identify locus (loci) or gene(s) associated with these metabolic traits for the crop improvement.

14.
Front Plant Sci ; 10: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842781

RESUMO

Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat.

15.
Front Plant Sci ; 9: 349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662498

RESUMO

Seed expansion in peanut is a complex biological process involving many gene regulatory pathways. MicroRNAs (miRNAs) play important regulatory roles in plant growth and development, but little is known about their functions during seed expansion, or how they contribute to seed expansion in different peanut lines. We examined seed miRNA expression patterns at 15 and 35 days after flowering (DAF) in two peanut eighth-generation recombinant inbred lines (RIL8); 8106, a medium-pod variety, and 8107, a super-pod variety. Using high-throughput sequencing, we identified 1,082 miRNAs in developing peanut seeds including 434 novel miRNAs. We identified 316 differentially expressed miRNAs by comparing expression levels between the two peanut lines. Interestingly, 24 miRNAs showed contrasting patterns of expression in the two RILs, and 149 miRNAs were expressed predominantly in only one RIL at 35 DAF. Also, potential target genes for some conserved and novel miRNAs were identified by degradome sequencing; target genes were predicted to be involved in auxin mediated signaling pathways and cell division. We validated the expression patterns of some representative miRNAs and 12 target genes by qPCR, and found negative correlations between the expression level of miRNAs and their targets. miR156e, miR159b, miR160a, miR164a, miR166b, miR168a, miR171n, miR172c-5p, and miR319d and their corresponding target genes may play key roles in seed expansion in peanut. The results of our study also provide novel insights into the dynamic changes in miRNAs that occur during peanut seed development, and increase our understanding of miRNA function in seed expansion.

16.
Front Plant Sci ; 8: 667, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515732

RESUMO

Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress-induced cell death probably by regulating endoplasmic reticulum (ER) stress-related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress-related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress-related plant osmotic stress resistance.

17.
PLoS One ; 10(9): e0137168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355995

RESUMO

Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Sementes/genética , Análise de Sequência de RNA/métodos , Ciclo Celular/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Tamanho do Órgão/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo
18.
Biol. Res ; 52: 14, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1011416

RESUMO

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Assuntos
Proteínas de Plantas/genética , Estresse Fisiológico/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Secas , Fenótipo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Fenômenos Fisiológicos Vegetais/genética , Reação em Cadeia da Polimerase em Tempo Real
19.
Biol. Res ; 51: 43, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-983944

RESUMO

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Assuntos
Estresse Fisiológico/fisiologia , Triticum/crescimento & desenvolvimento , RNA/isolamento & purificação , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Nitrogênio/metabolismo , Triticum/fisiologia , RNA/metabolismo , RNA Circular
20.
Plant Physiol ; 149(1): 434-44, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987212

RESUMO

Abscisic acid (ABA) is an important plant hormone for a wide array of growth and developmental processes and stress responses, but the mechanism of ABA signal perception on the plasma membrane remains to be dissected. A previous GeneChip analysis revealed that a member of the A4 subfamily of lectin receptor kinases (LecRKs) of Arabidopsis (Arabidopsis thaliana), At5g01540 (designated LecRKA4.1), is up-regulated in response to a low dose of ABA in the rop10-1 background. Here, we present functional evidence to support its role in ABA response. LecRKA4.1 is expressed in seeds and leaves but not in roots, and the protein is localized to the plasma membrane. A T-DNA knockout mutant, lecrka4.1-1, slightly enhanced ABA inhibition of seed germination. Interestingly, LecRKA4.1 is adjacent to two other members of the A4 subfamily of LecRK genes, At5g01550 (LecRKA4.2) and At5g01560 (LecRKA4.3). We found that loss-of-function mutants of LecRKA4.2 and LecRKA4.3 exhibited similarly weak enhancement of ABA response in seed germination inhibition. Furthermore, LecRKA4.2 suppression by RNA interference in lecrka4.1-1 showed stronger ABA inhibition of seed germination than lecrka4.1-1, while the response to gibberellic acid was not affected in lecrka4.1-1 and lecrka4.1-1; LecRKA4.2 (RNAi) lines. Expression studies, together with network-based analysis, suggest that LecRKA4.1 and LecRKA4.2 regulate some of the ABA-responsive genes. Taken together, our results demonstrate that the A4 subfamily of LecRKs has a redundant function in the negative regulation of ABA response in seed germination.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Germinação , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Giberelinas/metabolismo , Mutagênese Insercional , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA