Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884222

RESUMO

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Nitrogênio , Folhas de Planta , Folhas de Planta/química , Folhas de Planta/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Tibet , China , Florestas , Altitude , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/química , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/química , Traqueófitas/metabolismo , Pradaria , Poaceae/crescimento & desenvolvimento , Poaceae/química , Poaceae/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 606-614, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646747

RESUMO

As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.


Assuntos
Altitude , Folhas de Planta , Quercus , Sorbus , Quercus/fisiologia , Quercus/crescimento & desenvolvimento , China , Ecossistema , Tibet , Adaptação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA