Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int Microbiol ; 26(4): 1009-1020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37067733

RESUMO

Ectoine is a natural amino acid derivative and one of the most widely used compatible solutes produced by Halomonas species that affects both cellular growth and osmotic equilibrium. The positive effects of UV mutagenesis on both biomass and ectoine content production in ectoine-producing strains have yet to be reported. In this study, the wild-type H. campaniensis strain XH26 (CCTCCM2019776) was subjected to UV mutagenesis to increase ectoine production. Eight rounds of mutagenesis were used to generate mutated XH26 strains with different UV-irradiation exposure times. Ectoine extract concentrations were then evaluated among all strains using high-performance liquid chromatography analysis, alongside whole genome sequencing with the PacBio RS II platform and comparison of the wild-type strain XH26 and the mutant strain G8-52 genomes. The mutant strain G8-52 (CCTCCM2019777) exhibited the highest cell growth rate and ectoine yields among mutated strains in comparison with strain XH26. Further, ectoine levels in the aforementioned strain significantly increased to 1.51 ± 0.01 g L-1 (0.65 g g-1 of cell dry weight), representing a twofold increase compared to wild-type cells (0.51 ± 0.01 g L-1) when grown in culture medium for ectoine accumulation. Concomitantly, electron microscopy revealed that mutated strain G8-52 cells were obviously shorter than wild-type strain XH26 cells. Moreover, strain G8-52 produced a relatively stable ectoine yield (1.50 g L-1) after 40 days of continuous subculture. Comparative genomics analysis suggested that strain XH26 harbored 24 mutations, including 10 nucleotide insertions, 10 nucleotide deletions, and unique single nucleotide polymorphisms. Notably, the genes orf00723 and orf02403 (lipA) of the wild-type strain mutated to davT and gabD in strain G8-52 that encoded for 4-aminobutyrate-2-oxoglutarate transaminase and NAD-dependent succinate-semialdehyde dehydrogenase, respectively. Consequently, these genes may be involved in increased ectoine yields. These results suggest that continuous multiple rounds of UV mutation represent a successful strategy for increasing ectoine production, and that the mutant strain G8-52 is suitable for large-scale fermentation applications.


Assuntos
Halomonas , Halomonas/genética , Halomonas/metabolismo , Raios Ultravioleta , Genômica , Nucleotídeos/metabolismo
2.
Extremophiles ; 26(1): 14, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229247

RESUMO

Halophilic bacteria such as the genus Halomonas are promising candidates in diverse industrial, agricultural and biomedical applications. Here, we successfully isolated a halophilic Halomonas alkaliphila strain XH26 from Xiaochaidan Salt Lake, and studied its osmoadaptation strategies using transcriptome and ectoine analysis. Divergent mechanisms were involved in osmoadaptation at different salinities in H. alkaliphila XH26. At moderate salinity (6% NaCl), increased transcriptions of ABC transporters related to iron (III), phosphate, phosphonate, monosaccharide and oligosaccharide import were observed. At high salinity (15% NaCl), transcriptions of flagellum assembly and cell motility were significantly inhibited. The transcriptional levels of ABC transporter genes related to iron (III) and iron3+-hydroxamate import, glycine betaine and putrescine uptake, and cytochrome biogenesis and assembly were significantly up-regulated. Ectoine synthesis and accumulation was significantly increased under salt stress, and the increased transcriptional expressions of ectoine synthesis genes ectB and ectC may play a key role in high salinity induced osmoadaptation. At extreme high salinity (18% NaCl), 5-hydroxyectoine and ectoine worked together to maintain cell survival. Together these results give valuable insights into the osmoadaptation mechanisms of H. alkaliphila XH26, and provide useful information for further engineering this specific strain for increased ectoine synthesis and related applications.


Assuntos
Diamino Aminoácidos , Halomonas , Diamino Aminoácidos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Estresse Salino , Transcriptoma
3.
Antonie Van Leeuwenhoek ; 115(4): 545-559, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35243586

RESUMO

Here, we report the whole genome of a novel halophilic Halomonas species strain XH36 with high ectoine production potential. The genome was 3,818,310 bp in size with a GC content of 51.97%, and contained 3533 genes, 61 tRNAs and 18 rRNAs. The phylogenetic analysis using the 16s rRNA genes, the UBCGs and the TYGS database indicated that XH36 belongs to a novel Halomonas species, which we named as Halomonas qaidamensis. Osmoadaptation related genes including Na(+) and K(+) transport and compatible solute accumulation were both present in the XH36 genome, the latter of which mainly contained ectoine, 5-hydroxyectoine and betaine. HPLC validation studies showed that H. qaidamensis XH36 accumulated ectoine to cope with salt stress, and the content of ectoine could be as high as 315 mg/g CDW under 3 mol/l NaCl. Our results show that XH36 is a new promising industrial strain for ectoine production, and the genomic analysis will guide us to better understand its salt-induced osmoadaptation mechanisms, and provide theoretical references for future application research of ectoine.


Assuntos
Diamino Aminoácidos , Halomonas , Halomonas/genética , Filogenia , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
4.
Arch Microbiol ; 203(5): 2029-2042, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33554274

RESUMO

Halophilic Archaea are widely distributed globally in hypersaline environments. However, little is known of how dominant halophilic archaeal genera are distributed across environments and how they may co-associate across ecosystems. Here, the archaeal community composition and diversity from hypersaline environments (> 300 g/L salinity; total of 33 samples) in the Qaidam Basin of China were investigated using high-throughput Illumina sequencing of 16S rRNA genes. The archaeal communities (total of 3,419 OTUs) were dominated by the class Halobacteria (31.7-99.6% relative abundances) within the phylum Euryarchaeota (90.8-99.9%). Five predominant taxa, including Halorubrum, Halobacterium, Halopenitus, Methanothrix, and Halomicrobium, were observed across most samples. However, several distinct genera were associated with individual samples and were inconsistently distributed across samples, which contrast with previous studies of hypersaline archaeal communities. Additionally, co-occurrence network analysis indicated that five network clusters were present and potentially reflective of interspecies interactions among the environments, including three clusters (clusters II, III, and IV) comprising halophilic archaeal taxa within the Halobacteriaceae and Haloferacaceae families. In addition, two other clusters (clusters I and V) were identified that comprised methanogens. Finally, salinity comprising ionic concentrations (in the order of Na+ > Ca2+ > Mg2+) and pH were most correlated with taxonomic distributions across sample sites.


Assuntos
Ecossistema , Microbiologia Ambiental , Euryarchaeota/classificação , China , Euryarchaeota/genética , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/microbiologia
5.
Arch Microbiol ; 202(3): 525-538, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31712862

RESUMO

Seasonal temperature-fluctuation has been regarded as a key environmental factor affecting rural biogas fermentation yields. The present study investigated the impact of seasonal temperature-fluctuation on operating-temperatures and biogas production in rural household digesters at Qinghai Plateau and revealed the related changes in microbial diversity and community structure by 16S rRNA gene high-throughput sequencing (HTS) analysis. Our results showed closely positive correlation between operating-temperatures and biogas production. HTS analysis indicated the highest diversity for bacteria community in autumn (at highest operating-temperatures) and late winter (at lowest operating-temperatures) and for archaea community only in autumn. HTS analysis classified bacteria into 21 phyla and 346 genera with the most predominant phyla Firmicutes, Bacteroidetes and Proteobacteria (> 72.4% in total) and the most predominant genera Proteiniphilum, Clostridium sensustricto 1, Petrimonas, Pseudomonas and Fastidiosipila (37.09-38.61% in total). HTS analysis also revealed two main archaea orders (Methanomicrobiales and Methanobacteriales) and one predominant genus Methanogenium to support plateau biogas fermentation. Especially, a remarkable impact of temperature on the community abundances of bacteria phyla Synergistetes and archaea genera Methanogenium and Thermogymnomonas was observed, and such microbial community structure changes were positively consistent with the biogas production. The present work provided the first set of evidences to link temperature-controlled modulation of microbial community structure with rural household biogas production at Qinghai Plateau.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Gases/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , China , Características da Família , Fermentação , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Temperatura
6.
Arch Microbiol ; 202(8): 2093-2103, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32488562

RESUMO

Hypersaline lakes and saltern areas are important industrial and biodiversity resources in the Qaidam Basin of China that reside at > 2600 m asl. Most hypersaline environments in this area are characterized by saturated salinity (~ 300 g/L salinity), nearly neutral pH, intense ultraviolet radiation, and extremely variable temperature fluctuations. The core bacterial communities associated with these stressful environments have nevertheless remained uninvestigated. 16S rRNA gene Illumina sequencing analyses revealed that the bacterial communities were dominated by core lineages including the Proteobacteria (39.4-64.6%) and the Firmicutes (17.0-42.7%). However, the relative abundances of common lineages, and especially the five most abundant taxa of Pseudomonas, Lactococcus, Anoxybacillus, Acinetobacter, and Brevundimonas, were highly variable across communities and closely associated with hypersaline characteristics in the samples. Network analysis revealed the presence of co-occurrence high relative abundance taxa (cluster I) that were highly correlated across all hypersaline samples. Additionally, temperature, total organic carbon, K+, and Mg2+ correlated highest with taxonomic distributions across communities. These results highlight the potential mechanisms that could underlie survival and adaptation to these extreme hypersaline ecosystems.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Microbiologia Ambiental , China , Ecossistema , Ambientes Extremos , Filogenia , RNA Ribossômico 16S/genética , Salinidade
7.
Indian J Microbiol ; 60(3): 363-373, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32655200

RESUMO

Puma Yumco Lake (PYL) is an ultraoligotrophic freshwater lake that sits an altitude of 5030 m within the Qinghai-Tibet Plateau of China. The bacterial and archaeal diversity of the lake remains poorly understood, despite their potential to inform on biogeochemical cycling and environment-microbial associations in these unique environments. Here, the bacterial and archaeal communities of PYL were investigated using high-throughput sequencing analysis of community 16S rRNA gene sequences. Further, the relationships among dominant taxa and environmental factors were comprehensively evaluated. Bacterial diversity comprised 31 phyla and 371 genera (10,645 operational taxonomic units [OTUs], Shannon index values of 5.21-6.16) and was significantly higher than that of Archaea (five phyla and 24 genera comprising 1141 OTUs and Shannon index values of 1.18-3.28). The bacterial communities were dominated by Proteobacteria (48.42-59.97% relative abundances), followed by Bacteroidetes (12.5-32.51%), Acidobacteria (2.07-11.56%), Firmicutes (0.65-6.32%), Planctomycetes (0.99-3.56%), Gemmatimonadetes (0.38-3.57%), Actinobacteria (1.67-3.52%), Verrucomicrobia (0.87-2.01%), and Chloroflexi (0.5-1.17%). In addition, archaeal communities were dominated by Thaumarchaeota (33.22-93.00%), followed by Euryarchaeota (2.89-35.47%), Woesearchaeota (0.99-31.04%), and Pacearchaeota (0.01-1.14%). The most abundant bacterial genus was Rhodoferax (5.73-26.62%) and the most abundant archaeal genus was the ammonia-oxidizing Nitrososphaera (29.18-91.46%). These results suggest that the Rhodoferax and Nitrososphaera are likely to participate in biogeochemical cycles in these environments through photoheterotrophy and nitrification, respectively. Taken together, these results provide valuable data for better understanding microbial interactions with each other and with these unique environments.

8.
Semin Cell Dev Biol ; 71: 153-167, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28768152

RESUMO

Liver is highly regenerative as it can restore its function and size even after 70% partial hepatectomy. During liver regeneration, the mechanical and chemical environment of liver is altered with accumulation of various growth factors and remodeling of extracellular environment. Cells can sense the changes in their cellular environment through various chemo and mechanosensors present on their surfaces. These changes are then transduced by initiation of multiple signaling pathways. Traditional view of liver regeneration describes the process as a cascade of chemical signaling pathways. In this review, we describe the role of mechanical forces and mechanosensing in regulating liver regeneration with focus on the role of altered shear and extracellular matrix environment following injury. These mechanosensing mechanisms either generate molecular signals that further activate downstream signaling pathways such as YAP or directly transduce mechanical signals by regulating actomyosin cytoskeleton. These signals travel to the decision center such as nucleus to switch cell fate and activate functions needed in liver regeneration, e.g. proliferation of various hepatic cell types, differentiation of hepatic stem cells, extracellular matrix remodeling and termination signals that regulate the regenerated liver size. Different mechanical and chemical signals coordinate intracellular chemical signaling pathways leading to robust liver regeneration.


Assuntos
Regeneração Hepática , Fígado/fisiologia , Mecanotransdução Celular , Animais , Comunicação Celular , Matriz Extracelular , Humanos , Transdução de Sinais
9.
Sci Rep ; 13(1): 9732, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322079

RESUMO

Ectoine has gained considerable attention as a high-value chemical with significant application potential and market demand. This study aimed to increase ectoine yields by blocking the metabolic shunt pathway of L-aspartate-4-semialdehyde, the precursor substrate in ectoine synthesis. The homoserine dehydrogenase encoded by hom in H. campaniensis strain XH26 is responsible for the metabolic shunt of L-aspartate-4-semialdehyde to glycine. CRISPR/Cas9 technology was used to seamlessly knockout hom, blocking the metabolic shunt pathway to increase ectoine yields. The ectoine yield of XH26/Δhom was 351.13 mg (g CDW)-1 after 48 h of incubation in 500 mL shake flasks using optimal medium with 1.5 mol L-1 NaCl, which was significantly higher than the 239.18 mg (g CDW)-1 of the wild-type strain. Additionally, the absence of the ectoine metabolic shunt pathway affects betaine synthesis, and thus the betaine yields of XH26/Δhom was 19.98 mg (g CDW)-1, considerably lower than the 69.58 mg (g CDW)-1 of the wild-type strain. Batch fermentation parameters were optimized, and the wild-type strain and XH26/Δhom were fermented in 3 L fermenters, resulting in a high ectoine yield of 587.09 mg (g CDW)-1 for the defective strain, which was significantly greater than the ectoine yield of 385.03 mg (g CDW)-1 of the wild-type strain. This study showed that blocking the metabolic shunt of synthetic substrates effectively increases ectoine production, and a reduction in the competitively compatible solute betaine appears to promote increased ectoine synthesis.


Assuntos
Ácido Aspártico , Engenharia Metabólica , Engenharia Metabólica/métodos , Betaína
10.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2153-2168, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35786469

RESUMO

In recent years, antibiotic resistance has become increasingly serious, and the number of cancer patients keeps increasing. There is an urgent need to develop new drugs with antibacterial and antitumor effects. Halophilic microorganisms are a special group of microorganisms living in extreme environment. They have the characteristics of metabolic diversity, low nutritional requirements and adaptability to harsh conditions, thus can serve as promising candidates for new drug discovery. To date, researchers have isolated a variety of metabolites and enzymes with antibacterial and/or antitumor activities from halophilic microorganisms. This review summarized the functions and potential biomedical applications of halophilic microorganisms and their related products, such as antibacterial, anti-inflammatory, antitumor, antioxidant, biomedical materials and drug carriers. In particular, novel antibacterial and antitumor substances recently discovered in halophilic microorganisms, as well as the biomedical applications of ectoine, a unique metabolite found in halophilic microorganisms, were introduced. Finally, future development and utilization of halophilic microorganisms in biomedical and industrial fields were prospected.


Assuntos
Antibacterianos , Pesquisa Biomédica , Humanos
11.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 868-881, 2022 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-35355460

RESUMO

Ectoine is an amino acid derivative and an important natural product in halophilic microorganisms. It plays an important role in protecting cells and stabilizing biological macromolecules, and can be widely used in biomedical fields such as drug preparation adjuvants, organ transplantation and preservation, skin wound repair and cosmetics. Due to the medical value and commercial market demand of ectoine, this article summarized the recent advances in the microbial production of ectoine, including the mutation and breeding of hyper-producing strains, construction of genetically and metabolically engineered strains, optimization of fermentation processes, and extraction and purification processes. The application of multi-omics technologies and computational biology to develop an ectoine producing cell factory was prospected, with the aim to provide a reference for ectoine overproduction.


Assuntos
Diamino Aminoácidos , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Fermentação
12.
Curr Res Toxicol ; 2: 282-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34467220

RESUMO

Cell-based in vitro models coupled with high-throughput transcriptomics (HTTr) are increasingly utilized as alternative methods to animal-based toxicity testing. Here, using a panel of 14 chemicals with different risks of human drug-induced liver injury (DILI) and two dosing concentrations, we evaluated an HTTr platform comprised of collagen sandwich primary rat hepatocyte culture and the TempO-Seq surrogate S1500+ (ST) assay. First, the HTTr platform was found to exhibit high reproducibility between technical and biological replicates (r greater than 0.85). Connectivity mapping analysis further demonstrated a high level of inter-platform reproducibility between TempO-Seq data and Affymetrix GeneChip data from the Open TG-GATES project. Second, the TempO-Seq ST assay was shown to be a robust surrogate to the whole transcriptome (WT) assay in capturing chemical-induced changes in gene expression, as evident from correlation analysis, PCA and unsupervised hierarchical clustering. Gene set enrichment analysis (GSEA) using the Hallmark gene set collection also demonstrated consistency in enrichment scores between ST and WT assays. Lastly, unsupervised hierarchical clustering of hallmark enrichment scores broadly divided the samples into hepatotoxic, intermediate, and non-hepatotoxic groups. Xenobiotic metabolism, bile acid metabolism, apoptosis, p53 pathway, and coagulation were found to be the key hallmarks driving the clustering. Taken together, our results established the reproducibility and performance of collagen sandwich culture in combination with TempO-Seq S1500+ assay, and demonstrated the utility of GSEA using the hallmark gene set collection to identify potential hepatotoxicants for further validation.

13.
Comput Intell Neurosci ; 2020: 5047976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849864

RESUMO

Otsu's algorithm is one of the most well-known methods for automatic image thresholding. 2D Otsu's method is more robust compared to 1D Otsu's method. However, it still has limitations on salt-and-pepper noise corrupted images and uneven illumination images. To alleviate these limitations and improve the overall performance, here we propose an improved 2D Otsu's algorithm to increase the robustness to salt-and-pepper noise together with an adaptive energy based image partition technology for uneven illumination image segmentation. Based on the partition method, two schemes for automatic thresholding are adopted to find the best segmentation result. Experiments are conducted on both synthetic and real world uneven illumination images as well as real world regular illumination cell images. Original 2D Otsu's method, MAOTSU_2D, and two latest 1D Otsu's methods (Cao's method and DVE) are included for comparisons. Both qualitative and quantitative evaluations are introduced to verify the effectiveness of the proposed method. Results show that the proposed method is more robust to salt-and-pepper noise and acquires better segmentation results on uneven illumination images in general without compromising its performance on regular illumination images. For a test group of seven real world uneven illumination images, the proposed method could lower the ME value by 15% and increase the DSC value by 10%.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Iluminação
14.
Sci Rep ; 10(1): 4768, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179810

RESUMO

Hepatocyte spheroids are useful models for mimicking liver phenotypes in vitro because of their three-dimensionality. However, the lack of a biomaterial platform which allows the facile manipulation of spheroid cultures on a large scale severely limits their application in automated high-throughput drug safety testing. In addition, there is not yet a robust way of controlling spheroid size, homogeneity and integrity during extended culture. This work addresses these bottlenecks to the automation of hepatocyte spheroid culture by tethering 3D hepatocyte spheroids directly onto surface-modified polystyrene (PS) multi-well plates. However, polystyrene surfaces are inert toward functionalization, and this makes the uniform conjugation of bioactive ligands very challenging. Surface modification of polystyrene well plates is achieved herein using a three-step sequence, resulting in a homogeneous distribution of bioactive RGD and galactose ligands required for spheroid tethering and formation. Importantly, treatment of polystyrene tethered spheroids with vehicle and paradigm hepatotoxicant (chlorpromazine) treatment using an automated liquid handling platform shows low signal deviation, intact 3D spheroidal morphology and Z' values above 0.5, and hence confirming their amenability to high-throughput automation. Functional analyses performance (i.e. urea and albumin production, cytochrome P450 activity and induction studies) of the polystyrene tethered spheroids reveal significant improvements over hepatocytes cultured as collagen monolayers. This is the first demonstration of automated hepatotoxicant treatment on functional 3D hepatocyte spheroids tethered directly on polystyrene multi-well plates, and will serve as an important advancement in the application of 3D tethered spheroid models to high throughput drug screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Poliestirenos , Esferoides Celulares , Albuminas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Clorpromazina/toxicidade , Colágeno , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Ratos , Esferoides Celulares/efeitos dos fármacos , Ureia/metabolismo
15.
Micromachines (Basel) ; 10(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234335

RESUMO

Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.

16.
Biomaterials ; 192: 377-391, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30497023

RESUMO

Liver macrophages, Kupffer cells (KCs), play a critical role in drug-induced liver injury (DILI) and liver diseases including cholestasis, liver fibrosis and viral hepatitis. Application of KCs in in vitro models of DILI and liver diseases is hindered due to limited source of human KCs. In vivo, KCs originate from MYB-independent macrophage progenitors, which differentiate into liver-specific macrophages in response to hepatic cues in the liver. Here, we recapitulated KCs ontogeny by differentiation of MYB-independent iPSCs to macrophage-precursors and exposing them to hepatic cues to generate iPSC-derived KCs (iKCs). iKCs expressed macrophage markers (CD11/CD14/CD68/CD163/CD32) at 0.3-5 folds of primary adult human KCs (pKCs) and KC-specific CLEC-4F, ID1 and ID3. iKCs phagocytosed and secreted IL-6 and TNFα upon stimulation at levels similar to pKCs but different from non-liver macrophages. Hepatocyte-iKCs co-culture model was more sensitive in detecting hepatotoxicity induced by inflammation-associated drugs, Acetaminophen and Trovafloxacin, and Chlorpromazine-induced cholestasis when compared to hepatocytes alone. Overall, iKCs were mature, liver-specific and functional. Furthermore, donor-matched iKCs and iPSC-hepatocyte co-culture exhibited minimal non-specific background response compared to donor-mismatched counterpart. iKCs offer a mature renewable human cell source for liver-specific macrophages, useful in developing in vitro model to study DILI and liver diseases such as cholestasis.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células de Kupffer/citologia , Antígenos CD/análise , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Humanos , Fagocitose
17.
Sci Rep ; 8(1): 16016, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375454

RESUMO

Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico por imagem , Algoritmos , Animais , Biomarcadores , Biópsia , Colágeno/metabolismo , Aprendizado Profundo , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/normas , Cirrose Hepática/patologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Microscopia , Redes Neurais de Computação , Ratos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
18.
Sci Rep ; 7(1): 8491, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819231

RESUMO

Exposure to teratogenic chemicals during pregnancy may cause severe birth defects. Due to high inter-species variation of drug responses as well as financial and ethical burdens, despite the widely use of in vivo animal tests, it's crucial to develop highly predictive human pluripotent stem cell (hPSC)-based in vitro assays to identify potential teratogens. Previously we have shown that the morphological disruption of mesoendoderm patterns formed by geometrically-confined cell differentiation and migration using hPSCs could potentially serve as a sensitive morphological marker in teratogen detection. Here, a micropatterned human pluripotent stem cell test (µP-hPST) assay was developed using 30 pharmaceutical compounds. A simplified morphometric readout was developed to quantify the mesoendoderm pattern changes and a two-step classification rule was generated to identify teratogens. The optimized µP-hPST could classify the 30 compounds with 97% accuracy, 100% specificity and 93% sensitivity. Compared with metabolic biomarker-based hPSC assay by Stemina, the µP-hPST could successfully identify misclassified drugs Bosentan, Diphenylhydantoin and Lovastatin, and show a higher accuracy and sensitivity. This scalable µP-hPST may serve as either an independent assay or a complement assay for existing assays to reduce animal use, accelerate early discovery-phase drug screening and help general chemical screening of human teratogens.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes/efeitos dos fármacos , Teratogênicos/metabolismo , Humanos , Células-Tronco Pluripotentes/fisiologia , Sensibilidade e Especificidade
19.
Sci Rep ; 7: 41238, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120901

RESUMO

Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Pirimidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Acetaminofen/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Citocromo P-450 CYP1A2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Indazóis , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/metabolismo , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Biomaterials ; 50: 87-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736499

RESUMO

Heterogeneity in human pluripotent stem cell (PSC) fates is partially caused by mechanical asymmetry arising from spatial polarization of cell-cell and cell-matrix adhesions. Independent studies have shown that integrin and E-cadherin adhesions promote opposing differentiation and pluripotent fates respectively although their crosstalk mechanism in modulating cell fate heterogeneity remains unknown. Here, we demonstrated that spatial polarization of integrin and E-cadherin adhesions in a human PSC colony compete to recruit Rho-ROCK activated myosin II to different localities to pattern pluripotent-differentiation decisions, resulting in spatially heterogeneous colonies. Cell micropatterning was used to modulate the spatial polarization of cell adhesions, which enabled us to prospectively determine localization patterns of activated myosin II and mesoendoderm differentiation. Direct inhibition of Rho-ROCK-myosin II activation phenocopied E-cadherin rather than integrin inhibition to form uniformly differentiated colonies. This indicated that E-cadherin was the primary gatekeeper to differentiation progression. This insight allows for biomaterials to be tailored for human PSC maintenance or differentiation with minimal heterogeneity.


Assuntos
Caderinas/metabolismo , Diferenciação Celular , Integrinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Actomiosina/metabolismo , Antígenos CD , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/efeitos dos fármacos , Humanos , Laminina/farmacologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Miosina Tipo II/metabolismo , Proteoglicanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA