Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Physiol Mol Biol Plants ; 29(11): 1633-1646, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38162923

RESUMO

Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a perennial epiphytic herb of the family Orchidaceae. The main metabolites of D. huoshanense include polysaccharides and flavonoids. Low temperature is the main environmental factor that limits the growth and development of plants. However, changes that occur at the molecular level in response to low temperatures in D. huoshanense are poorly understood. We performed a transcriptome analysis at two time points of 0 d (control group) and 7 d (cold stress group) under culture of D. huoshanense at 4 °C. A total of 37.63 Gb transcriptomic data were generated using the MGI 2000 platform. These reads were assembled into 170,754 transcripts and 23,724 differentially expressed genes (DEGs) were obtained. Pathway analysis indicated that "flavonoid biosynthesis," "anthocyanin biosynthesis," "flavone and flavonol biosynthesis," and "plant hormone signal transduction" might play a vital role in the response of D. huoshanense to cold stress. Several important pathway genes were identified to be altered under cold stress, such as genes encoding polysaccharides, flavonoids, and plant hormone-signaling transduction kinase. In addition, the content of mannose and total flavonoids increased under cold stress. Twelve DEGs related to polysaccharides, flavonoid, and hormone pathways were selected from the transcriptome data for validation with real-time quantitative PCR (RT-qPCR). Our results provide a transcriptome database and candidate genes for further study of the response of D. huoshanense to cold stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01385-7.

2.
BMC Genomics ; 22(1): 579, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325653

RESUMO

BACKGROUND: Dendrobium officinale, an endangered Chinese herb, possesses extensive therapeutic effects and contains bioactive ingredients such as major polysaccharides, alkaloids, and minimal flavonoids. We first obtained the protocorm-like bodies (PLBs) of this plant through tissue culture in order to determine the distribution of the main secondary metabolites in each organelle and the PLBs. We then analyzed the correlation between gene expression level from comparative transcriptome sequencing and metabolite content in different organs to identify putative genes encoding enzymes involved in the biosynthesis of polysaccharides, alkaloids, and flavonoids. RESULTS: We used seeds as explants for protocorm induction and PLB propagation of D. officinale. The optimal medium formula for PLB propagation was 1/2 MS + α-NAA 0.5 mg·L- 1 + 6-BA 1.0 mg·L- 1 + 2, 4-D 1.5-2.0 mg·L- 1 + potato juice 100 g·L- 1. Stems, PLBs and leaves of D. officinale had the highest content of polysaccharides, alkaloids and flavonoids, respectively. Naringenin was only produced in stem; however, PLBs with high alkaloid content can replace other organs producing alkaloids. The hot water extraction method outperformed the ultrasound-assisted extraction method for extracting polysaccharides from D. officinale. A comparative transcriptome analysis of PLBs and leaves of D. officinale revealed differential expression of genes encoding enzymes involved in polysaccharide, alkaloid and flavonoid biosynthetic pathways. Putative genes encoding enzymes involved in these biosynthetic pathways were identified. Notably, we identified genes encoding the alkaloid biosynthesis enzymes strictosidine ß-D-Glucosidase, geissoschizine synthase and vinorine synthase in D. officinale. CONCLUSIONS: The identification of candidate genes encoding enzymes involved in metabolite biosynthesis will help to explore and protect this endangered species and facilitate further analysis of the molecular mechanism of secondary metabolite biosynthesis in D. officinale.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Perfilação da Expressão Gênica , Folhas de Planta/genética , Transcriptoma
3.
Planta ; 255(1): 26, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940902

RESUMO

MAIN CONCLUSION: The Albizia julibrissin chloroplasts have a classical chloroplast genome structure, containing 93 coding genes and 34 non-coding genes. Our research provides basic data for plant phylogenetic evolutionary studies. There is limited genomic information available for the important Chinese herb Albizia julibrissin Durazz. In this study, we constructed the chloroplast (Cp) genome of A. julibrissin. The length of the assembled Cp genome was 175,922 bp consisting of four conserved regions: a 5145 bp small single-copy (SSC) region, a 91,323 bp large single-copy (LSC) region, and two identical length-inverted repeat (IR) regions (39,725 bp). This Cp genome included 34 non-coding RNAs and 93 unique genes, the former contains 30 transfer and 4 ribosomal RNA genes. Gene annotation indicated some of the coding genes (82) in the A. julibrissin Cp genome classified in the Leguminosae family, with some to other related families (11). The results show that low GC content (36.9%) and codon bias towards A- or T-terminal codons may affect the frequency of gene codon usage. The sequence analysis identified 30 forward, 18 palindrome, and 1 reverse repeat > 30 bp length, and 149 simple sequence repeats (SSR). Fifty-five RNA editing sites in the Cp of A. julibrissin were predicted, most of which are C-to-U conversions. Analysis of the reverse repeat expansion or contraction and divergence area between several species, including A. julibrissin, was performed. The phylogenetic tree revealed that A. julibrissin was most closely related to Albizia odoratissima and Albizia bracteata, followed by Samanea saman, forming an evolutionary branch with Mimosa pudica and Leucaena trichandra. The research results are helpful for breeding and genetic improvement of A. julibrissin, and also provide valuable information for understanding the evolution of this plant.


Assuntos
Albizzia , Fabaceae , Genoma de Cloroplastos , Composição de Bases , Filogenia
4.
Front Biosci (Landmark Ed) ; 29(1): 1, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38287794

RESUMO

BACKGROUND: R2R3-MYB genes comprise one of the largest and most important gene families in plants, and are involved in the regulation of plant growth and development as well as responses to abiotic stresses. However, the functions of R2R3-MYB genes in Dendrobium nobile remains largely unknown. METHODS: Here, a comprehensive genome-wide analysis of D. nobile R2R3-MYB genes was performed, in which phylogenic relationships, gene structures, motif composition, chromosomal locations, collinearity analysis, and cis-acting elements were investigated. Moreover, the expression patterns of selected DnMYB genes were analyzed in various tissues and under different abiotic stresses. RESULTS: In total, 125 DnMYB genes were identified in the D. nobile genome, and were subdivided into 26 groups based on phylogenetic analysis. Most genes in the same subgroup showed similar exon/intron structure and motif composition. All the DnMYB genes were mapped to 19 chromosomes with the co-linearity relationship. Reverse transcription-quantitative real-time PCR (RT-qPCR) results showed that 8 DnMYBs exhibited different expression patterns in different plant tissues, and were differentially expressed in response to abscisic acid, methyl jasmonate, low-temperature stress. CONCLUSIONS: This work contributes to a comprehensive understanding of the R2R3-MYB gene family in D. nobile, and provides candidate genes for future research on abiotic stress in this plant.


Assuntos
Dendrobium , Genes myb , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ácido Abscísico , Regulação da Expressão Gênica de Plantas
5.
PeerJ ; 12: e17371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708338

RESUMO

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Assuntos
Acetatos , Fatores de Transcrição de Zíper de Leucina Básica , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Filogenia , Platycodon , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Acetatos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Platycodon/genética , Platycodon/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Reguladores de Crescimento de Plantas/farmacologia
6.
Plant Signal Behav ; 18(1): 2163345, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36592637

RESUMO

Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.


Assuntos
Genoma de Cloroplastos , Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Filogenia , Genoma de Cloroplastos/genética , Cloroplastos/genética
7.
BMC Biotechnol ; 12: 34, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22748182

RESUMO

BACKGROUND: As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus) produces many terpenoid indole alkaloids (TIAs), such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. RESULTS: To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report ß-glucuronidase (GUS) gene and a selectable marker neomycin phosphotransferase II gene (NTPII). The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 µM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC) showed that overexpression of DAT increased the yield of vindoline in transgenic plants. CONCLUSIONS: In the present study, we report an efficient Agrobacterium-mediated transformation system for C. roseus plants with 11% of transformation frequency. To our knowledge, this is the first report on the establishment of A. tumefaciens mediated transformation and regeneration of C. roseus. More importantly, the C. roseus transformation system developed in this work was confirmed in the successful transformation of C. roseus using a key gene DAT involved in TIAs biosynthetic pathway resulting in the higher accumulation of vindoline in transgenic plants.


Assuntos
Agrobacterium tumefaciens/genética , Catharanthus/crescimento & desenvolvimento , Catharanthus/genética , Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Transformação Genética , Catharanthus/metabolismo , Células Cultivadas , Vetores Genéticos/genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo
8.
Mitochondrial DNA B Resour ; 7(7): 1249-1251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837494

RESUMO

The complete chloroplast genome sequence of Lespedeza buergeri is presented in this report. It is 149,065 bp in length and divided into four distinct regions: a small single copy (SSC) region of 18,934 bp, a large single copy (LSC) region of 82,476 bp, and a pair of inverted repeat regions of 23,826 bp. The annotation of the L. buergeri complete chloroplast genome predicted a total of 123 genes (77 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Phylogenetic analysis with the reported chloroplast genomes revealed that L. buergeri is nested in the genus Lespedeza of Fabaceae family. Furthermore, L. buergeri exhibited a close relationship with Lespedeza bicolor and Lespedeza cuneata. This results in this study might contribute to further investigating the evolutionary relationship of family Fabaceae.

9.
Front Plant Sci ; 13: 937392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873990

RESUMO

The highly esteemed Chinese herb, Dendrobium huoshanense, whose major metabolites are polysaccharides and alkaloids, is on the verge of extinction. The stone planting under the forest (SPUF) and greenhouse planting (GP) of D. huoshanense are two different cultivation methods of pharmaceutical Dendrobium with significantly differences in morphology, metabolites content and composition, and medication efficacy. Here, we conducted proteomics and phosphoproteomics analyses to reveal differences in molecular mechanisms between SPUF and GP. We identified 237 differentially expressed proteins (DEPs) between the two proteomes, and 291 modification sites belonging to 215 phosphoproteins with a phosphorylation level significantly changed (PLSC) were observed. GO, KEGG pathway, protein domain, and cluster analyses revealed that these DEPs were mainly localized in the chloroplast; involved in processes such as posttranslational modification, carbohydrate transport and metabolism, and secondary metabolite biosynthesis; and enriched in pathways mainly including linoleic acid metabolism, plant-pathogen interactions, and phenylpropanoid, cutin, suberin, and wax biosynthesis. PLSC phosphoproteins were mainly located in the chloroplast, and highly enriched in responses to different stresses and signal transduction mechanisms through protein kinase and phosphotransferase activities. Significant differences between SPUF and GP were observed by mapping the DEPs and phosphorylated proteins to photosynthesis and polysaccharide and alkaloid biosynthesis pathways. Phosphorylation characteristics and kinase categories in D. huoshanense were also clarified in this study. We analyzed different molecular mechanisms between SPUF and GP at proteomic and phosphoproteomic levels, providing valuable information for the development and utilization of D. huoshanense.

10.
Plant Signal Behav ; 17(1): 2089473, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35730590

RESUMO

Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.


Assuntos
Platycodon , Triterpenos , Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas/genética , Oxilipinas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Platycodon/genética , Platycodon/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
11.
J Ethnopharmacol ; 293: 115329, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490901

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a bulk medicinal material used in traditional Chinese medicine, that can cure cardiovascular diseases, neurasthenia, and other conditions. Sweating is a frequently used method of processing S. miltiorrhiza for medical applications. We previously demonstrated changes to the metabolic profile of linoleic acid, glyoxylate, and dicarboxylate after Sweating. However, this alteration has not been explained at the molecular level. MATERIALS AND METHODS: Fresh roots of Salvia miltiorrhiza Bunge were treated by the Sweating processing, and then the tandem mass tag technique was used to compare the proteome difference between Sweating S. miltiorrhiza and non-Sweating S. miltiorrhiza. RESULTS: We identified a total of 850 differentially expressed proteins after Sweating treatment in S. miltiorrhiza, including 529 upregulated proteins and 321 downregulated proteins. GO enrichment analysis indicated that these differentially expressed proteins are involved in external encapsulating structure, cell wall, oxidoreductase activity, ligase activity, and others. Further analysis showed that CYP450, the pathogenesis-related protein Bet v 1 family, and the peroxidase domain were the major protein domains. KEGG enrichment identified 18 pathways, of which phenylpropanoid biosynthesis is the most important one related to the metabolite profile and is the principal chemical component of S. miltiorrhiza. CONCLUSION: This study addressed potential molecular mechanisms in S. miltiorrhiza after Sweating, and the findings provide reasons for the changes in biochemical properties and metabolites changes which might cause pharmacological variation at the proteome level.


Assuntos
Salvia miltiorrhiza , Medicina Tradicional Chinesa , Raízes de Plantas/metabolismo , Proteoma , Proteômica , Salvia miltiorrhiza/química , Sudorese
12.
Front Plant Sci ; 13: 955628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860532

RESUMO

Platycodin D (PD) is a deglycosylated triterpene saponin with much higher pharmacological activity than glycosylated platycoside E (PE). Extensive studies in vitro showed that the transformation of platycoside E to platycodin D can be achieved using ß-glucosidase extracted from several bacteria. However, whether similar enzymes in Platycodon grandiflorus could convert platycoside E to platycodin D, as well as the molecular mechanism underlying the deglycosylation process of platycodon E, remain unclear. Here, we identified a ß-glucosidase in P. grandiflorus from our previous RNA-seq analysis, with a full-length cDNA of 1,488 bp encoding 495 amino acids. Bioinformatics and phylogenetic analyses showed that ß-glucosidases in P. grandiflorus have high homology with other plant ß-glucosidases. Subcellular localization showed that there is no subcellular preference for its encoding gene. ß-glucosidase was successfully expressed as 6 × His-tagged fusion protein in Escherichia coli BL21 (DE3). Western blot analysis yielded a recombinant protein of approximately 68 kDa. In vitro enzymatic reactions determined that ß-glucosidase was functional and could convert PE to PD. RT-qPCR analysis showed that the expression level of ß-glucosidase was higher at night than during the day, with the highest expression level between 9:00 and 12:00 at night. Analysis of the promoter sequence showed many light-responsive cis-acting elements, suggesting that the light might regulate the gene. The results will contribute to the further study of the biosynthesis and metabolism regulation of triterpenoid saponins in P. grandiflorus.

13.
Front Plant Sci ; 13: 822374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251091

RESUMO

The lysine crotonylation of histone proteins is a newly identified posttranslational modification with diversified cellular functions. However, there are few reports on lysine crotonylation of non-histone proteins in medicinal plant cells. By using high-resolution liquid chromatography-mass spectrometry (LC-MS) coupled with highly sensitive-specific immune-affinity antibody analysis, a whole crotonylation proteome analysis of Dendrobium huoshanense was performed. In total, 1,591 proteins with 4,726 lysine crotonylation sites were identified; among them, 11 conserved motifs were identified. Bioinformatic analyses linked crotonylated proteins to the drought stress response and multiple metabolic pathways, including secondary metabolite biosynthesis, transport and catabolism, energy production and conversion, carbohydrate transport and metabolism, translation, and ribosomal structure and biogenesis. This study contributes toward understanding the regulatory mechanism of polysaccharide biosynthesis at the crotonylation level even under abiotic stress.

14.
Front Nutr ; 9: 1013756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245500

RESUMO

It is found that the growth of Dendrobium huoshanense was dependent on Fe3O4, while the bioavailability of plants to ordinary Fe3O4 was low on the earth. In order to improve the growth, quality and yield of D. huoshanense, we used Fe3O4 NPs (100 or 200 mg/L) that was easily absorbed by plants as nano-fertilizer to hydroponically treat seedlings of D. huoshanense for 3 weeks. Fe3O4 NPs induced not only earlier flowering and increased sugar content and photosynthesis, but also stressed to plants, increased MDA content and related antioxidant enzymes activities. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed that Fe3O4 NPs caused a significant accumulation of Fe and some other nutrient elements (Mn, Co, B, Mo) in stems of D. huoshanense. Metabolomics revealed that the metabolites were reprogrammed in D. huoshanense when under Fe3O4 NPs exposure. Fe3O4 NPs inhibited antioxidant defense-related pathways, demonstrating that Fe3O4 NPs have antioxidant capacity to protect D. huoshanense from damage. As the first study associating Fe3O4 NPs with the quality of D. huoshanense, it provided vital insights into the molecular mechanisms of how D. huoshanense responds to Fe3O4 NPs, ensuring the reasonable use of Fe3O4 NPs as nano-fertilizer.

15.
Plant Genome ; : e20258, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36209364

RESUMO

Ginger (Zingiber officinale Roscoe) is an important plant used worldwide for medicine and food. The R2R3-MYB transcription factor (TF) family has essential roles in plant growth, development, and stresses resistance, and the number of genes in the family varies greatly among different types of plants. However, genome-wide discovery of ZoMYBs and gene responses to stresses have not been reported in ginger. Therefore, genome-wide analysis of R2R3-MYB genes in ginger was conducted in this study. Protein phylogenetic relations and conserved motifs and chromosome localization and duplication, structure, and cis-regulatory elements were analyzed. In addition, the expression patterns of selected genes were analyzed under two different stresses. A total of 299 candidate ZoMYB genes were discovered in ginger. Based on groupings of R2R3-MYB genes in the model plant Arabidopsis thaliana (L.) Heynh., ZoMYBs were divided into eight groups. Genes were distributed across 22 chromosomes at uneven densities. In gene duplication analysis, 120 segmental duplications were identified in the ginger genome. Gene expression patterns of 10 ZoMYBs in leaves of ginger under abscisic acid (ABA) and low-temperature stress treatments were different. The results will help to determine the exact roles of ZoMYBs in anti-stress responses in ginger.

16.
J Biomed Biotechnol ; 2011: 793198, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660143

RESUMO

The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.


Assuntos
Catharanthus/efeitos dos fármacos , Catharanthus/genética , Colchicina/farmacologia , Citometria de Fluxo/métodos , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Alcaloides de Triptamina e Secologanina/metabolismo , Sementes/genética , Análise de Variância , Catharanthus/metabolismo , Expressão Gênica , Fenótipo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sementes/metabolismo , Tetraploidia
17.
Mitochondrial DNA B Resour ; 6(9): 2695-2696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447883

RESUMO

Buxus megistophylla Levl. is one of the most common green horticultural plants in the city presently. Here, we assembled and annotated the complete chloroplast (cp) genome of B. megistophylla. The whole length of the genome is 157,611 bp and encodes a total of 124 genes, which contains 89 protein-coding genes, 31 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Phylogenetic tree analysis showed that B. megistophylla is separated from two other species of the same family, but these three species, clustered in one clade, are relatively closer to each other compared to the species in other families. This cp genome sequencing and phylogenetic analysis offer genetic background for conservation and may contribute to further evolutionary studies of this species.

18.
Mitochondrial DNA B Resour ; 6(8): 2174-2176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34263043

RESUMO

The complete chloroplast genome sequence of Epilobium hirsutum L. is presented here. It is 161,111 bp in length and divides into four distinct regions: a small single-copy region (SSC) of 17,310 bp, a large single-copy region (LSC) of 89,117 bp, and a pair of inverted repeat (IR) regions of 27,342 bp. The chloroplast genome of E. hirsutum includes a total of 125 genes, consisting of 31 tRNA genes, 8 rRNA genes, and 86 protein-coding genes. A phylogenetic tree was generated to evaluate the evolutionary relationship between E. hirsutum and relevant species. The chloroplast genome sequencing and phylogenetic analysis offer genetic background for conservation and phylogenetic studied of this species.

19.
Sci Rep ; 11(1): 9810, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963244

RESUMO

Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown ß-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of ß-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Metabolômica , Ácido Oleanólico/análogos & derivados , Platycodon , Saponinas , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Platycodon/genética , Platycodon/metabolismo , Saponinas/genética , Saponinas/metabolismo
20.
Sci Rep ; 10(1): 19524, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177654

RESUMO

Salvia miltiorrhiza has numerous compounds with extensive clinical application. "Sweating", a processing method of Traditional Chinese Medicine (TCM), results in great changes in pharmacology and pharmacodynamics. Previously, chromatogram of 10 characteristic metabolites in S. miltiorrhiza showed a significant difference after "Sweating". Due to the complexity of TCM, changes in metabolites should be investigated metabolome-wide after "Sweating". An untargeted UPLC/MS-based metabolomics was performed to discover metabolites profile variation of S. miltiorrhiza after "Sweating". Multivariate analysis was conducted to screen differential metabolites. Analysis indicated distinct differences between sweated and non-sweated samples. 10,108 substance peaks had been detected altogether, and 4759 metabolites had been identified from negative and positive ion model. 287 differential metabolites were screened including 112 up-regulated and 175 down-regulated and they belong to lipids and lipid-like molecules, and phenylpropanoid and polyketides. KEGG analysis showed the pathway of linoleic acid metabolism, and glyoxylate and dicarboxylate metabolism were mainly enriched. 31 and 49 identified metabolites were exclusively detected in SSM and NSSM, respectively, which mainly belong to carboxylic acids and derivatives, polyketides and fatty acyls. By mapping tanshinones and salvianolic acids to 4759 identified metabolites library, 23 characteristic metabolites had been identified, among which 11 metabolites changed most. We conclude that "Sweating'' has significant effect on metabolites content and composition of S. miltiorrhiza.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Medicina Tradicional Chinesa/métodos , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Abietanos/metabolismo , Alcenos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Análise Multivariada , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Polifenóis/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA