Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell ; 30(2): 397-414, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367305

RESUMO

Establishment of symbiosis between legumes and nitrogen-fixing rhizobia depends on bacterial Nod factors (NFs) that trigger symbiosis-related NF signaling in host plants. NFs are modified oligosaccharides of chitin with a fatty acid moiety. NFs can be cleaved and inactivated by host enzymes, such as MtNFH1 (MEDICAGO TRUNCATULA NOD FACTOR HYDROLASE1). In contrast to related chitinases, MtNFH1 hydrolyzes neither chitin nor chitin fragments, indicating a high cleavage preference for NFs. Here, we provide evidence for a role of MtNFH1 in the symbiosis with Sinorhizobium meliloti Upon rhizobial inoculation, MtNFH1 accumulated at the curled tip of root hairs, in the so-called infection chamber. Mutant analysis revealed that lack of MtNFH1 delayed rhizobial root hair infection, suggesting that excess amounts of NFs negatively affect the initiation of infection threads. MtNFH1 deficiency resulted in nodule hypertrophy and abnormal nodule branching of young nodules. Nodule branching was also stimulated in plants expressing MtNFH1 driven by a tandem CaMV 35S promoter and plants inoculated by a NF-overproducing S. meliloti strain. We suggest that fine-tuning of NF levels by MtNFH1 is necessary for optimal root hair infection as well as for NF-regulated growth of mature nodules.


Assuntos
Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Medicago truncatula/enzimologia , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Simbiose , Quitina/metabolismo , Hidrolases/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Oligossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia
2.
Inorg Chem ; 58(22): 15283-15290, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31701750

RESUMO

For the first time, quaternary chalcogenide CuNi2InS4 nanocrystals with a wurtzite structure have been designed and fabricated as a new magnetic semiconductor. The phase structure analysis suggests that the synthesized wurtzite CuNi2InS4 phase has a disordered structure in which Cu+, Ni2+, and In3+ ions share the same lattice site of the unit cell with a random cation distribution. The prepared CuNi2InS4 nanocrystals have uniform bullet-like morphology, small size distribution, good monodispersity, and high crystallinity. The magnetic properties investigation reveals that the wurtzite CuNi2InS4 nanocrystals can exhibit a weak ferromagnetic moment with the blocking temperature at around 13 K thanks to the disordered wurtzite structure and the high content of magnetic Ni2+ ions. As for the semiconducting properties, the as-obtained wurtzite CuNi2InS4 nanocrystals show a strong and broad visible light absorption and have a direct bandgap of 1.45 eV. Due to their favorable optical properties, the fabricated thin film of CuNi2InS4 nanocrystals exhibits a good photoelectric response to the solar spectrum, which makes the obtained new phase potential candidate for applications in the photovoltaics. This work demonstrates a new metastable I-II2-III-VI4 chalcogenide that can be used to render multiple functionalities and applications.

3.
Plant Cell Rep ; 38(5): 587-596, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712103

RESUMO

KEY MESSAGE: Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a homologous gene of AREB/ABFs form Arabidopsis, was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.


Assuntos
Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vitis/genética
4.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818833

RESUMO

It is clear that the incompatibility system in Fragaria is gametophytic, however, the genetic mechanism behind this remains elusive. Eleven second-generation lines of Fragaria viridis with different compatibility were obtained by manual self-pollination, which can be displayed directly by the level of fruit-set rate. We sequenced two second-generation selfing lines with large differences in fruit-set rate: Ls-S2-53 as a self-incompatible sequencing sample, and Ls-S2-76 as a strong self-compatible sequencing sample. Fragaria vesca was used as a completely self-compatible reference sample, and the genome-wide variations were identified and subsequently annotated. The distribution of polymorphisms is similar on each chromosome between the two sequencing samples, however, the distribution regions and the number of homozygous variations are inconsistent. Expression pattern analysis showed that six candidate genes were significantly associated with self-incompatibility. Using F. vesca as a reference, we focused our attention on the gene FIP2-like (FH protein interacting protein), associated with actin cytoskeleton formation, as the resulting proteins in Ls-S2-53 and Ls-S2-76 have each lost a number of different amino acids. Suppression of FIP2-like to some extent inhibits germination of pollen grains and growth of pollen tubes by reducing F-actin of the pollen tube tips. Our results suggest that the differential distribution of homozygous variations affects F. viridis fruit-set rate and that the fully encoded FIP2-like can function normally to promote F-actin formation, while the new FIP2-like proteins with shortened amino acid sequences have influenced the (in)compatibility of two selfing lines of F. viridis.


Assuntos
Fragaria/genética , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Autoincompatibilidade em Angiospermas/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Cruzamentos Genéticos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Germinação , Homozigoto , Mutação INDEL/genética , Anotação de Sequência Molecular , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética
5.
Genome ; 61(9): 675-683, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30067072

RESUMO

SQUAMOSA promoter-binding protein-like (SPL) is a class of plant-specific transcription factors that play critical roles in regulating plant growth and development. However, little systematic research on SPL genes has been conducted in strawberry. In this study, 14 SPL genes were identified in the genome of woodland strawberry (Fragaria vesca), one of the model plants of the family Rosaceae. Chromosome localization analysis indicated that the 14 FvSPL genes were unevenly distributed on six chromosomes. Phylogenetic analysis indicated that the FvSPL proteins could be clustered into six groups (G1 to G6). Genes with similar structure were classified into the same group, implying their functional redundancy. In addition, nine out of the 14 FvSPL genes, belonging to G1, G2, and G5, were found to be the putative targets of FvmiR156 genes. Expression analysis indicated FvSPL genes exhibited highly diverse expression patterns in the tissues and organs examined. The transcript levels of most FvmiR156-targeted FvSPL genes in fruit were lower than those non-miR156-targeted genes. In addition, the expression of the FvmiR156-targeted FvSPL genes decreased during fruit ripening, whereas the expression of FvmiR156 genes increased in fruit during this process. The results provide a foundation for future functional analysis of FvSPL genes in strawberry growth and development.


Assuntos
Fragaria/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Flores/genética , Flores/crescimento & desenvolvimento , Fragaria/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
6.
Plant J ; 86(2): 175-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26959080

RESUMO

Crassulacean acid metabolism (CAM) is a CO2 fixation pathway that maximizes water-use efficiency (WUE), compared with the C3/C4 CO2 pathway, which permits CAM plants to adapt to arid environments. The CAM pathway provides excellent opportunities to genetically design plants, especially bioenergy crops, with a high WUE and better photosynthetic performance than C3/C4 in arid environments. The information available on the origin and evolution of CAM is scant, however. Here, we analyzed transcriptomes from 13 orchid species and two existing orchid genomes, covering CAM and C3 plants, with an emphasis on comparing 13 gene families involved in the complete carbon fixation pathway. The dosage of the core photosynthesis-related genes plays no substantial role in the evolution of CAM in orchids; however, CAM may have evolved primarily by changes at the transcription level of key carbon fixation pathway genes. We proposed that in both dark and light, CO2 is primarily fixed and then released through two metabolic pathways via known genes, such as PPC1, PPDK and PPCK. This study reports a comprehensive comparison of carbon fixation pathway genes across different photosynthetic plants, and reveals the importance of the level of expression of key genes in the origin and evolution of CAM.


Assuntos
Ciclo do Carbono , Evolução Molecular , Genes de Plantas , Orchidaceae/metabolismo , Orchidaceae/classificação , Orchidaceae/genética , Filogenia , Estômatos de Plantas/metabolismo , Transcriptoma
7.
Plant Sci ; 347: 112179, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004407

RESUMO

Ethylene response factor (ERF) is a class of plant-specific transcription factors that play an important role in plant growth, development, and stress response. However, the underlying mechanism of strawberry ERFs in pathogenic responses against Botrytis cinerea (B. cinerea) remains largely unclear. In this study, we isolated FaERF2, a nucleus-localized ERF transcription factor from Fragaria x ananassa. Transiently overexpressing FaERF2 in strawberry fruits significantly enhances their resistant ability to B. cinerea, while silencing FaERF2 in strawberry fruits enhances their susceptibility to B. cinerea. In addition, we found that FaERF2 could directly bind to the cis-acting element GCC box in the promoters of two ß-1,3-glucanase genes, FaBG-1 and FaBG-2, and activate their expression. Finally, both strawberry fruits transient expression followed by B. cinerea inoculation assays and recombinant protein incubation tests collectively substantiated the inhibitory effect of FaBG-1 and FaBG-2 on B. cinerea mycelium growth. These results revealed the molecular regulation mechanism of FaERF2 in response to B. cinerea and laid foundations for creating disease-resistance strawberry cultivar through genome editing approach.

8.
Front Immunol ; 15: 1408406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887291

RESUMO

Introduction: Acute respiratory distress syndrome (ARDS) is a major cause of death among critically ill patients in intensive care settings, underscoring the need to identify biomarkers capable of predicting ARDS patient clinical status and prognosis at an early time point. This study specifically sought to explore the utility and clinical relevance of TM9SF1 as a biomarker for the early prediction of disease severity and prognostic outcomes in patients with ARDS. Methods: This study enrolled 123 patients with severe ARDS and 116 patients with non-severe ARDS for whom follow-up information was available. The mRNA levels of TM9SF1 and cytokines in peripheral blood mononuclear cells from these patients were evaluated by qPCR. The predictive performance of TM9SF1 and other clinical indicators was evaluated using received operating characteristic (ROC) curves. A predictive nomogram was developed based on TM9SF1 expression and evaluated for its ability in the early prediction of severe disease and mortality in patients with ARDS. Results: TM9SF1 mRNA expression was found to be significantly increased in patients with severe ARDS relative to those with non-severe disease or healthy controls. ARDS severity increased in correspondence with the level of TM9SF1 expression (odds ratio [OR] = 2.43, 95% confidence interval [CI] = 2.15-3.72, P = 0.005), and high TM9SF1 levels were associated with a greater risk of mortality (hazard ratio [HR] = 2.27, 95% CI = 2.20-4.39, P = 0.001). ROC curves demonstrated that relative to other clinical indicators, TM9SF1 offered superior performance in the prediction of ARDS severity and mortality. A novel nomogram incorporating TM9SF1 expression together with age, D-dimer levels, and C-reactive protein (CRP) levels was developed and was used to predict ARDS severity (AUC = 0.887, 95% CI = 0.715-0.943). A separate model incorporating TM9SF1 expression, age, neutrophil-lymphocyte ratio (NLR), and D-dimer levels (C-index = 0.890, 95% CI = 0.627-0.957) was also developed for predicting mortality. Conclusion: Increases in ARDS severity and patient mortality were observed with rising levels of TM9SF1 expression. TM9SF1 may thus offer utility as a novel biomarker for the early prediction of ARDS patient disease status and clinical outcomes.


Assuntos
Biomarcadores , Síndrome do Desconforto Respiratório , Índice de Gravidade de Doença , Humanos , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/genética , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Adulto , Curva ROC , Citocinas/sangue , Citocinas/metabolismo
9.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090094

RESUMO

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

10.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043166

RESUMO

Pathogen invasion leads to fast, local-to-systemic signal transduction that initiates plant defense responses. Despite tremendous progress in past decades, aspects of this process remain unknown, such as which cell types respond first and how signals are transferred among cell types. Here, we used single-cell RNA-seq of more than 50 000 single cells to document the gene expression landscape in leaves of woodland strawberry during infection by Botrytis cinerea and identify major cell types. We constructed a single-cell atlas and characterized the distinct gene expression patterns of hydathode, epidermal, and mesophyll cells during the incubation period of B. cinerea infection. Pseudotime trajectory analysis revealed signals of the transition from normal functioning to defense response in epidermal and mesophyll cells upon B. cinerea infection. Genes related to disease resistance showed different expression patterns among cell types: disease resistance-related genes and gene encoding transcription factors were highly expressed in individual cell types and interacted to trigger plant systemic immunity to B. cinerea. This is the first report to document the of single-cell transcriptional landscape of the plant pathogenic invasion process, it provides new insights into the wholistic dynamics of host-pathogen interactions and can guide the identification of genes and the formulation of strategies for resistant cultivar development.

11.
Genes (Basel) ; 12(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800118

RESUMO

Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.


Assuntos
Endosperma , Fragaria , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Impressão Genômica , Proteínas de Plantas , Endosperma/genética , Endosperma/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
12.
Nanoscale ; 13(10): 5369-5382, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33660720

RESUMO

Near-infrared (NIR) light-induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in photothermal therapy systems, a variety of photothermal agents have been developed. However, the exploration of novel photothermal therapy nanoplatforms with high NIR absorption remains a significant challenge, especially those working in both NIR-I and NIR-II windows. In this work, Bi19S27I3 nanorods with remarkably high absorption covering the whole visible light to the entire NIR-I and NIR-II regions have been successfully prepared through a facile solvothermal approach. The as-synthesized Bi19S27I3 nanorods have a high photothermal conversion efficiency of 42.7% at 808 nm (NIR-I) and 41.5% at 1064 nm (NIR-II), making them a promising candidate for photothermal therapy. In vitro cell viability assay reveals that the Bi19S27I3 sample has good biocompatibility and exhibits significant cell-killing effect under NIR irradiation. In vivo anti-tumor experiments demonstrate that the tumor growth can be effectively inhibited by fatal hyperthermia ablation mediated by Bi19S27I3 nanorods under the irradiation of an 808 nm or 1064 nm laser. Therefore, this study should be primarily beneficial for the development of new materials for NIR photothermal therapy applications.


Assuntos
Nanoestruturas , Nanotubos , Neoplasias , Humanos , Lasers , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
13.
Plants (Basel) ; 8(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514279

RESUMO

SQUAMOSA-promoter binding protein-like (SPL) proteins are plant-specific transcript factors that play essential roles in plant growth and development. Although many SPL genes have been well characterized in model plants like Arabidopsis, rice and tomato, the functions of SPLs in strawberry are still largely elusive. In the present study, we cloned and characterized FvSPL10, the ortholog of AtSPL9, from woodland strawberry. Subcellular localization shows FvSPL10 localizes in the cell nucleus. The luciferase system assay indicates FvSPL10 is a transcriptional activator, and both in vitro and in vivo assays indicate FvSPL10 could bind to the promoter of FvAP1 and activate its expression. Ectopic expression of FvSPL10 in Arabidopsis promotes early flowering and increases organs size. These results demonstrate the multiple regulatory roles of FvSPL10 in plant growth and development and lay a foundation for investigating the biological functions of FvSPL10 in strawberry.

14.
Mol Plant ; 12(8): 1090-1102, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048024

RESUMO

Tillering in rice is one of the most important agronomic traits. Rice tiller development can be divided into two main processes: the formation of the axillary bud and its subsequent outgrowth. Several genes critical for bud formation in rice have been identified by genetic studies; however, their molecular functions and relationships are still largely unknown. Here, we report that MONOCULM 1 (MOC1) and MONOCULM 3/TILLERS ABSENT 1/STERILE AND REDUCED TILLERING 1 (MOC3/TAB1/SRT1), two vital regulators for tiller formation in rice, physically interact to regulate tiller bud outgrowth through upregulating the expression of FLORAL ORGAN NUMBER1 (FON1), the homolog of CLAVATA1 in rice. We found that MOC3 is able to directly bind the promoter of FON1 and subsequently activate FON1 expression. MOC1 functions as a co-activator of MOC3, whereas it could not directly bind the FON1 promoter, and further activated FON1 expression in the presence of MOC3. Accordingly, FON1 is highly expressed at axillary meristems and shows remarkably decreased expression levels in moc1 and moc3 mutants. Loss-of-function mutants of FON1 exhibit normal bud formation but defective bud outgrowth and reduced tiller number. Collectively, these results shed light on a joint transcriptional regulatory mechanim by MOC1 and MOC3, and establish a new framework for the control of tiller bud formation and outgrowth.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética
15.
Dalton Trans ; 47(10): 3408-3416, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29431784

RESUMO

Thin-film photodetectors built from one-dimensional nanostructures have attracted extensive attention due to their significance in basic scientific research and potential technological applications. It is still desirable to develop new materials with a wide response range for application in photodetectors. In this work, a Bi19S27I3 nanorod cluster film has been successfully fabricated on various rigid substrates by a facile solvothermal method. The component nanorods exhibit an oriented growth along the [001] direction. The UV-Vis-NIR absorption spectrum shows a continuous strong absorption spanning the whole visible light to near-infrared region and presents a direct band gap of 0.83 eV for the prepared Bi19S27I3 nanorod clusters. The spectral photoresponse of the Bi19S27I3-based photodetector device demonstrates a broad photoresponse ranging from ultraviolet to near infrared. The photocurrent results reveal that the photodetector exhibits a more sensitive response towards near-infrared light than visible light. Furthermore, the photodetector based on the Bi19S27I3 nanorod cluster film shows significantly enhanced photodetection performance compared to Bi19S27I3 nanorod powder. The photocurrent and on-off ratio of the prepared nanorod cluster film are respectively up to 400 times and several times higher than those of the powder sample. The on-off ratios are about 265 and 66 under NIR illumination and 48 and 11 under visible light for the film and powder samples, respectively. These results suggest a great potential application of the prepared Bi19S27I3 nanorod cluster film in optoelectronic devices.

16.
Cell Res ; 27(9): 1128-1141, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28809396

RESUMO

Strigolactones (SLs), a group of carotenoid derived terpenoid lactones, are root-to-shoot phytohormones suppressing shoot branching by inhibiting the outgrowth of axillary buds. DWARF 53 (D53), the key repressor of the SL signaling pathway, is speculated to regulate the downstream transcriptional network of the SL response. However, no downstream transcription factor targeted by D53 has yet been reported. Here we report that Ideal Plant Architecture 1 (IPA1), a key regulator of the plant architecture in rice, functions as a direct downstream component of D53 in regulating tiller number and SL-induced gene expression. We showed that D53 interacts with IPA1 in vivo and in vitro and suppresses the transcriptional activation activity of IPA1. We further showed that IPA1 could directly bind to the D53 promoter and plays a critical role in the feedback regulation of SL-induced D53 expression. These findings reveal that IPA1 is likely one of the long-speculated transcription factors that act with D53 to mediate the SL-regulated tiller development in rice.


Assuntos
Lactonas/farmacologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação com Perda de Função , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
17.
Hortic Res ; 2: 15019, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504570

RESUMO

Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed.

18.
Int J Genomics ; 2015: 536943, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770968

RESUMO

The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.

19.
J Genet Genomics ; 42(2): 71-8, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25697101

RESUMO

WUSCHEL (WUS) plays an essential role for the maintenance of meristem activity in dicots, but its function is still elusive in monocots. We isolated a new monoculm mutant, monoculm 3 (moc3), in which a point mutation causes the premature termination of rice O. sativa WUS (OsWUS). Morphological observation revealed that the formation of tiller buds was disrupted in moc3. MOC3 was localized in the nuclear and could interact with TOPLESS-RELATED PROTEINS (TPRs). The expression of MOC3 was induced by cytokinins and defection of MOC3 affected the expression of several two-component cytokinin response regulators, OsRRs and ORRs. Our results suggest that MOC3 is required for the formation of axillary buds and has a complex relationship with cytokinins.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Citocininas/metabolismo , Estudos de Associação Genética , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/química , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência
20.
J Exp Bot ; 58(11): 2799-810, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17615411

RESUMO

Glycoside hydrolases are often members of a multigene family, suggesting individual roles for each isoenzyme. Various extracellular glycoside hydrolases have an important but poorly understood function in remodelling the cell wall during plant growth. Here, MsXyl1, a concanavalin A-binding protein from alfalfa (Medicago sativa L.) belonging to the glycoside hydrolase family 3 (beta-D-xylosidase branch) is characterized. Transcripts of MsXyl1 were detected in roots (particularly root tips), root nodules, and flowers. MsXyl1 under the control of the CaMV 35S promoter was expressed in the model legume Medicago truncatula (Gaertner). Concanavalin A-binding proteins from the transgenic plants exhibited 5-8-fold increased activities towards three p-nitrophenyl (PNP) glycosides, namely PNP-beta-D-xyloside, PNP-alpha-L-arabinofuranoside, and PNP-alpha-L-arabinopyranoside. An antiserum raised against a synthetic peptide recognized MsXyl1, which was processed to a 65 kDa form. To characterize the substrate specificity of MsXyl1, the recombinant protein was purified from transgenic M. truncatula leaves by concanavalin A and anion chromatography. MsXyl1cleaved beta-1,4-linked D-xylo-oligosaccharides and alpha-1,5-linked L-arabino-oligosaccharides. Arabinoxylan (from wheat) and arabinan (from sugar beet) were substrates for MsXyl1, whereas xylan (from oat spelts) was resistant to degradation. Furthermore, MsXyl1 released xylose and arabinose from cell wall polysaccharides isolated from alfalfa roots. These data suggest that MsXyl1 is a multifunctional beta-xylosidase/alpha-L-arabinofuranosidase/alpha-L-arabinopyranosidase implicated in cell wall turnover of arabinose and xylose, particularly in rapidly growing root tips. Moreover, the findings of this study demonstrate that stable transgenic M. truncatula plants serve as an excellent expression system for purification and characterization of proteins.


Assuntos
Glicosídeo Hidrolases/genética , Medicago sativa/enzimologia , Medicago truncatula/genética , Proteínas de Plantas/genética , Xilosidases/genética , Sequência de Aminoácidos , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Medicago sativa/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Xilosidases/química , Xilosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA