Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38531838

RESUMO

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Interferência de RNA , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , RNA de Cadeia Dupla/metabolismo , Transgenes , Animais Geneticamente Modificados/metabolismo , RNA Interferente Pequeno/genética
2.
Environ Res ; 262(Pt 2): 119958, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276839

RESUMO

Magnetite nanoparticles (Fe3O4-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of Fe3O4-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with Fe3O4-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with Fe3O4-NPs) was approximately 1.65 folds of R0 (control), and effluent COD removal efficiency was maintained at approximately 98.32% upon 20 kg COD/(m3·d) OLR. The components of volatile fatty acids are acetate and propionate, and the rapid scavenging of propionate accumulation was the difference between R1 and the control. The INT-ETS activity of R1 was consistently higher than that of R0 and R2, and the electron transfer efficiencies increased by 68.78% and 131.44%, respectively. Meanwhile, the CV curve analysis showed that the current of R1 was 40% higher than R3 (temporary addition of Fe3O4-NPs), indicating that multiple electron transfer modes might coexist. High-throughput analysis further revealed that it was difficult to reverse the progressive deterioration of system performance with increasing OLR by simply reconfiguring bacterial community structure and abundance, demonstrating that the Fe3O4-NPs-mediated DIET pathway is a prerequisite for establishing multiple electron transfer systems. This study provides a long-term and multi-scale assessment of the gaining effect of Fe3O4-NPs in anaerobic digestion scale-up devices, and provides technical support for their practical engineering applications.

3.
J Chem Phys ; 161(16)2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39435838

RESUMO

We report the experimental observation of the delayed fragmentation of the weakly bound dimer Kr2+ produced through the single ionization of Kr2 by a femtosecond laser field. The observed time delay between ionization and fragmentation, which reflects the survival time of the resulting Kr2+, is measured on the microsecond timescale. A detailed analysis of the kinetic energy releases of the ejected fragments and photoelectrons suggests that this delayed fragmentation arises from the radiative decay of the long-lived Kr2+, transitioning from the bound state II(1/2u) to the repulsive state I(1/2g).

4.
Nucleic Acids Res ; 50(10): 5757-5771, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639925

RESUMO

Synechococcus elongatus, formerly known as Anacystis nidulans, is a representative species of cyanobacteria. It is also a model organism for the study of photoreactivation, which can be fully photoreactivated even after receiving high UV doses. However, for a long time, only one photolyase was found in S. elongatus that is only able to photorepair UV induced cyclobutane pyrimidine dimers (CPDs) in DNA. Here, we characterize another photolyase in S. elongatus, which belongs to iron-sulfur bacterial cryptochromes and photolyases (FeS-BCP), a subtype of prokaryotic 6-4 photolyases. This photolyase was named SePhrB that could efficiently photorepair 6-4 photoproducts in DNA. Chemical analyses revealed that SePhrB contains a catalytic FAD cofactor and an iron-sulfur cluster. All of previously reported FeS-BCPs contain 6,7-dimethyl-8-ribityllumazine (DMRL) as their antenna chromophores. Here, we first demonstrated that SePhrB possesses 7,8-didemethyl-8-hydroxy-5-deazariboflavin (8-HDF) as an antenna chromophore. Nevertheless, SePhrB could be photoreduced without external electron donors. After being photoreduced, the reduced FAD cofactor in SePhrB was extremely stable against air oxidation. These results suggest that FeS-BCPs are more diverse than expected which deserve further investigation.


Assuntos
Desoxirribodipirimidina Fotoliase , DNA/química , Reparo do DNA , Desoxirribodipirimidina Fotoliase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro , Dímeros de Pirimidina/química , Enxofre , Synechococcus , Raios Ultravioleta
5.
Biochem Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753026

RESUMO

The Stat (signal transducer and activator of transcription) gene family plays a vital role in regulating immunity and the processes of cellular proliferation, differentiation, and apoptosis across diverse organisms. Although the functions of Stat genes in immunity have been extensively documented in many mammals, limited data are available for reptiles. We used phylogenetic analysis to identify eight putative members of the Stat family (Stat1-1, Stat1-2, Stat2, Stat3, Stat4, Stat5b, Stat6-1, and Stat6-2) within the genome of M. reevesii, a freshwater turtle found in East Asia. Sequence analysis showed that the Stat genes contain four conserved structural domains protein interaction domain, coiled-coil domain, DNA-binding domain, and Src homology domain 2. In addition, Stat1, Stat2, and Stat6 contain TAZ2bind, Apolipo_F, and TALPID3 structural domains. The mRNA levels of Stat genes were upregulated in spleen tissues at 4, 8, 12, and 16 h after administration of lipopolysaccharide, a potent activator of the immune system. Stat5b expression at 12-h LPS post-injection exhibited the most substantial difference from the control. The expression of Stat5b in spleen tissue cellular was verified by immunofluorescence. These results suggest that Stat5b plays a role in the immune response of M. reevesii and may prove to be as a positive marker of an immune response in future studies.

6.
Genes Dev ; 30(19): 2213-2225, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798844

RESUMO

Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)-PUF-8, MEX-3, GLD-1, and CGH-1-that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3' untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3' UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis.


Assuntos
Apoptose/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caspases/genética , Caspases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA
7.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456702

RESUMO

Tumor immunotherapy has emerged as a promising approach in cancer treatment in recent years, offering vast potential. This method primarily involves targeting and inhibiting the suppressive checkpoints present in different immune cells to enhance their activation, ultimately leading to tumor regression. However, tumor cells exploit the surrounding immune cells and tissues to establish a tumor microenvironment (TME) that supports their survival and growth. Within the TME, the efficacy of effector immune cells is compromised, as tumor cells exploit inhibitory immune cells to suppress their function. Furthermore, certain immune cells can be co-opted by tumor cells to facilitate tumor growth. While significantly enhancing the body's tumor immunity can lead to tumor regression, it can also result in severe toxic side effects and an inflammatory factor storm. As a consequence, patients often discontinue treatment due to immune-related adverse events (irAEs) or, in extreme cases, succumb to toxic side effects before experiencing tumor regression. In this analysis, we examined several remission regimens for irAEs, each with its own drawbacks, including toxic side effects or suppression of tumor immunotherapy, which is undesirable. A recent research study, specifically aimed at downregulating intestinal epithelial barrier permeability, has shown promising results in reducing the severity of inflammatory bowel disease (IBD) while preserving immune function. This approach effectively reduces the severity of IBD without compromising the levels of TNF-α and IFN-γ, which are crucial for maintaining the efficacy of tumor immunotherapy. Based on the substantial similarities between IBD and ICI colitis (combo immune checkpoint inhibitors-induced colitis), this review proposes that targeting epithelial cells represents a crucial research direction for mitigating irAEs in the future.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico
8.
Mol Ecol ; 32(21): 5757-5770, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740683

RESUMO

Population-scale genome resequencing of endangered animals may contribute to gaining an understanding of how genomes vary as population sizes become smaller, as well as the functional implications of such variation. In this study, we analysed structural variations and gene presence and absence variations in the genomes of population of the endangered crocodile lizards. We found that the frequencies of some genes showed significant differences between crocodile lizards in different regions, indicating the influence of environmental selection, as well as potential contributions from demography and isolation, in shaping gene presence and absence variations. The haplotype diversity of major histocompatibility complex (MHC) genes was also found to differ among crocodile lizards inhabiting different regions. These findings indicate that well-designed interbreeding of crocodile lizards from different regions may facilitate the exchange of genes between different lizard populations and increase the haplotype diversity of MHC genes, which may be beneficial for the survival of these lizards. Our findings in this study, based on differences in gene structural variation, provide new insights into genomic variation and may contribute to the conservation of endangered animals.

9.
PLoS Biol ; 18(6): e3000731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479501

RESUMO

The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-ß-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.


Assuntos
Envelhecimento/patologia , Lamina Tipo A/deficiência , Músculo Esquelético/patologia , Osteoporose/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Fenômenos Biomecânicos , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/sangue , Fenótipo
10.
Protein Expr Purif ; 206: 106256, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871763

RESUMO

Snustorr snarlik (Snsl) is a type of extracellular protein essential for insect cuticle formation and insect survival, but is absent in mammals, making it a potential selective target for pest control. Here, we successfully expressed and purified the Snsl protein of Plutella xylostella in Escherichia coli. Two truncated forms of Snsl protein, Snsl 16-119 and Snsl 16-159, were expressed as a maltose-binding protein (MBP) fusion protein and purified to a purity above 90% after a five-step purification protocol. Snsl 16-119, forming stable monomer in solution, was crystallized, and the crystal was diffracted to a resolution of ∼10 Å. Snsl 16-159, forming an equilibrium between monomer and octamer in solution, was shown to form rod-shaped particles on negative staining electron-microscopy images. Our results lay a foundation for the determination of the structure of Snsl, which would improve our understanding of the molecular mechanism of cuticle formation and related pesticide resistance and provide a template for structure-based insecticide design.


Assuntos
Inseticidas , Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Resistência a Inseticidas , Inseticidas/metabolismo , Larva , Mamíferos
11.
Eur J Clin Microbiol Infect Dis ; 42(10): 1183-1194, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606868

RESUMO

PURPOSE: To predict prognosis in HIV-negative cryptococcal meningitis (CM) patients by developing and validating a machine learning (ML) model. METHODS: This study involved 523 HIV-negative CM patients diagnosed between January 1, 1998, and August 31, 2022, by neurologists from 3 tertiary Chinese centers. Prognosis was evaluated at 10 weeks after the initiation of antifungal therapy. RESULTS: The final prediction model for HIV-negative CM patients comprised 8 variables: Cerebrospinal fluid (CSF) cryptococcal count, CSF white blood cell (WBC), altered mental status, hearing impairment, CSF chloride levels, CSF opening pressure (OP), aspartate aminotransferase levels at admission, and decreased rate of CSF cryptococcal count within 2 weeks after admission. The areas under the curve (AUCs) in the internal, temporal, and external validation sets were 0.87 (95% CI 0.794-0.944), 0.92 (95% CI 0.795-1.000), and 0.86 (95% CI 0.744-0.975), respectively. An artificial intelligence (AI) model was trained to detect and count cryptococci, and the mean average precision (mAP) was 0.993. CONCLUSION: A ML model for predicting prognosis in HIV-negative CM patients was built and validated, and the model might provide a reference for personalized treatment of HIV-negative CM patients. The change in the CSF cryptococcal count in the early phase of HIV-negative CM treatment can reflect the prognosis of the disease. In addition, utilizing AI to detect and count CSF cryptococci in HIV-negative CM patients can eliminate the interference of human factors in detecting cryptococci in CSF samples and reduce the workload of the examiner.


Assuntos
Cryptococcus , Infecções por HIV , Meningite Criptocócica , Humanos , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/tratamento farmacológico , Inteligência Artificial , Prognóstico , Aprendizado de Máquina , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
12.
Clin Oral Investig ; 27(2): 571-580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239788

RESUMO

OBJECTIVES: To investigate the effect of chemotherapy versus no chemotherapy on the risk of second primary head and neck malignancies (SPHNMs) in patients with locally advanced oral squamous cell carcinoma (OSCC) and to assess the survival outcomes of patients with SPHNM. MATERIALS AND METHODS: A total of 937 OSCC patients were divided into chemotherapy and nonchemotherapy groups by propensity score matching (PSM). In the presence of the competing event of non-SPHNM death, the fine and gray modified Cox proportional hazard model was fitted to detect the impact of various factors, including the history of chemotherapy, on SPHNM risk. The Kaplan-Meier method was used to assess the survival outcomes of patients. RESULTS: After PSM, the 10-year cumulative probability of SPHNM was 10.7% for patients who received chemotherapy and 22.1% for patients who did not. The fine and gray regression model showed that prior chemotherapy was associated with a 51% reduced risk of SPHNM (adjusted subdistribution hazard ratio (sHR): 0.49, 95% confidence interval (CI): 0.29-0.84, P = 0.1). The disease-free survival (DFS) rates did not differ significantly between the SPHNM and non-SPHNM groups. And there were no significant differences in DFS rates between the patients with and those without prior chemotherapy in the SPHNM group. CONCLUSIONS: Chemotherapy for locally advanced primary OSCC is associated with a decreased incidence of subsequent SPHNM. However, chemotherapy for the primary cancer does not improve DFS in patients with SPHNM. CLINICAL RELEVANCE: Chemotherapy plays a positive role in preventing SPHNMs for patients with oral squamous cell carcinoma. CLINICAL TRIAL REGISTRATION: Before January 2015, the data were retrieved retrospectively, while after January 2015, the data were collected prospectively in a POROMS database (ClinicalTrials.gov ID: NCT02395367).


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Segunda Neoplasia Primária , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Segunda Neoplasia Primária/prevenção & controle , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
13.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049891

RESUMO

Proton exchange membranes (PEMs) are an important type of vanadium redox flow battery (VRFB) separator that play the key role of separating positive and negative electrolytes while transporting protons. In order to lower the vanadium ion permeability and improve the proton selectivity of PEMs for enhancing the Coulombic efficiency of VRFBs, herein, various amounts of nano-sized SiO2 particles were introduced into a previously optimized sulfonated poly(arylene ether) (SPAE) PEMs through the acid-catalyzed sol-gel reaction of tetraethyl orthosilicate (TEOS). The successful incorporation of SiO2 was confirmed by FT-IR spectra. The scanning electron microscopy (SEM) images revealed that the SiO2 particles were well distributed in the SPAE membrane. The ion exchange capacity, water uptake, and swelling ratio of the PEMs were decreased with the increasing amount of SiO2, while the mechanical properties and thermal stability were improved significantly. The proton conductivity was reduced gradually from 93.4 to 76.9 mS cm-1 at room temperature as the loading amount of SiO2 was increased from 0 to 16 wt.%; however, the VO2+ permeability was decreased dramatically after the incorporation of SiO2 and reached a minimum value of 2.57 × 10-12 m2 s-1 at 12 wt.% of SiO2. As a result, the H+/VO2+ selectivity achieved a maximum value of 51.82 S min cm-3 for the composite PEM containing 12 wt.% of SiO2. This study demonstrates that the properties of PEMs can be largely tuned by the introduction of SiO2 with low cost for VRFB applications.

14.
PLoS Pathog ; 16(8): e1008697, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776976

RESUMO

The diamondback moth, Plutella xylostella, is a cosmopolitan pest and the first species to develop field resistance to toxins from the gram-positive bacterium Bacillus thuringiensis (Bt). Although previous work has suggested that mutations of ATP-binding cassette transporter subfamily C2 (ABCC2) or C3 (ABCC3) genes can confer Cry1Ac resistance, here we reveal that P. xylostella requires combined mutations in both PxABCC2 and PxABCC3 to achieve high-level Cry1Ac resistance, rather than simply a mutation of either gene. We identified natural mutations of PxABCC2 and PxABCC3 that concurrently occurred in a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella, with a mutation (RA2) causing the mis-splicing of PxABCC2 and another mutation (RA3) leading to the premature termination of PxABCC3. Genetic linkage analysis showed that RA2 and RA3 were tightly linked to Cry1Ac resistance. Introgression of RA2 and RA3 enabled a susceptible strain (G88) of P. xylostella to obtain high resistance to Cry1Ac, confirming that these genes confer resistance. To further support the role of PxABCC2 and PxABCC3 in Cry1Ac resistance, frameshift mutations were introduced into PxABCC2 and PxABCC3 singly and in combination in the G88 strain with CRISPR/Cas9 mediated mutagenesis. Bioassays of CRISPR-based mutant strains, plus genetic complementation tests, demonstrated that the deletion of PxABCC2 or PxABCC3 alone provided < 4-fold tolerance to Cry1Ac, while disruption of both genes together conferred >8,000-fold resistance to Cry1Ac, suggesting the redundant/complementary roles of PxABCC2 and PxABCC3. This work advances our understanding of Bt resistance in P. xylostella by demonstrating mutations within both PxABCC2 and PxABCC3 genes are required for high-level Cry1Ac resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mariposas/química , Mariposas/genética , Mariposas/metabolismo , Mutação , Alinhamento de Sequência
15.
Opt Express ; 30(19): 34601-34611, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242469

RESUMO

Metasurfaces supporting surface lattice resonances (SLRs) with narrow linewidths and high quality factors have become an exciting platform for diverse applications. Here we numerically show, for the first time, that narrowband out-of-plane Mie electric dipole SLRs (ED-SLRs) can be excited together with the in-plane ED-SLRs and magnetic-dipole SLRs in periodic silicon disks under oblique incidence with TM polarization. Simulation results show that the out-of-plane ED-SLR can have four times larger quality factors than the in-plane one under the same excitation conditions, and can have distinct near-field distributions and dispersion relationships compared with the plasmonic counterpart in periodic metallic nanodisks. We further show that the out-of-plane ED-SLR can define a symmetry-protected bound state in the continuum (BIC) at normal incidence, which transits into a quasi-BIC when the excitation field symmetry is slightly broken by the small incidence angle. We expect this work will advance the engineering of Mie SLRs for applications in metasurface-based nanolasers, nonlinear optics, and optical sensing.

16.
Arch Biochem Biophys ; 725: 109294, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35584725

RESUMO

BACKGROUND: Despite that estradiol can reduce the risk of cardiovascular diseases in ovariectomized animals in the plains, its effect on animals at high altitude has seldom been reported. We hypothesize that estradiol can ameliorate cardiac damage to ovariectomized rats induced by chronic exposure to hypobaric hypoxia at high altitude. PURPOSE: This study was intended to investigate whether cardiovascular magnetic resonance (CMR) imaging could reveal cardioprotective effect of estradiol on ovariectomized rats under chronic exposure to hypobaric hypoxia at high altitude. METHODS: Thirty-two rats were randomized into the Control group (Plain), HH + Sham group (Hypobaric Hypoxia + Sham), HH + OVX group (Hypobaric Hypoxia + Bilateral Ovariectomy) and HH-OVX + E2 group (Hypobaric Hypoxia + Bilateral Ovariectomy + Estradiol, 50 µg/kg, 3 times a week, for 6 weeks) (n = 8 per group). Except the Control group (altitude: 500 m), rats in other groups were subcutaneously injected with 17ß -estradiol or vehicle and exposed to chronic hypobaric hypoxia in Qinghai-Tibet Plateau (altitude: 4250 m), China, for 6 weeks. Biventricular cardiac function and global strain of the rats were measured by CMR and analyzed using the cine tissue tracking techniques. Biochemical tests, histopathology and electronic microscopy were used to evaluate the protective effect of estradiol on the heart tissue of ovariectomized rats exposed to a high-altitude environment. RESULTS: The biventricular ejection fraction and global strains decreased in the HH + OVX group compared with that in the Control group (all p < 0.05). All the aforementioned changes in the HH + OVX group ameliorated in the HH-OVX + E2 group (all p < 0.05). Estradiol also alleviated the right ventricular dilatation and hypertrophy in the HH + OVX group (all p < 0.05). In addition, histological and biochemical analyses also supported these in vivo results. CONCLUSIONS: Estradiol ameliorated the biventricular structural and functional damage in ovariectomized rats exposed to chronic hypobaric hypoxia at high altitude.


Assuntos
Altitude , Estradiol , Animais , Estradiol/farmacologia , Feminino , Hipóxia , Espectroscopia de Ressonância Magnética , Ratos , Ratos Sprague-Dawley
17.
Int Arch Allergy Immunol ; 183(4): 424-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856542

RESUMO

INTRODUCTION: Salidroside (Sal) a bioactive component extracted from Rhodiola rosea is remarkable for its anti-asthmatic effects. The study aimed to explore the molecular mechanism of Sal in airway inflammation and remodeling in asthmatic mice and provide a novel theoretical basis for asthma treatment. METHODS: An asthmatic mouse model was established via ovalbumin (OVA) treatment, followed by injection of Sal and transfection of miR-323-3p-mimic and sh- suppressor of cytokine signaling 5 (SOCS5). Expressions of miR-323-3p, SOCS5 mRNA, collagen (COL)-I, and COL-III were detected via reverse transcription quantitative polymerase chain reaction. SOCS5 protein level was detected via Western blot. Levels of IgE, IL-13, IL-4, and IL-5 were detected via enzyme-linked immunosorbent assay. Inflammatory cell infiltration was observed via hematoxylin-eosin staining. Collagen disposition was observed via Masson staining. Resistance index (RI) of airway hyperresponsiveness, and the number of total cells, inflammatory cells (eosinophil, macrophage, neutrophil, and lymphocyte) in bronchoalveolar lavage fluid (BALF) were observed. The binding relationship between miR-323-3p and SOCS5 was predicted through the RNA22 website and verified via dual-luciferase reporter assay. RESULTS: miR-323-3p was highly expressed in OVA-treated mice. Sal treatment reduced inflammatory cell infiltration, COL disposition, miR-323-3p expression, and IgE, IL-13, IL-4, IL-5, COL-I, and COL-III levels, RI value, and the number of total cells and inflammatory cells in BALF. miR-323-3p inhibited SOCS5 transcription. miR-323-3p overexpression or SOCS5 downregulation reversed the protecting role of Sal in asthmatic mice. CONCLUSION: Sal inhibited miR-323-3p expression to promote SOCS5 transcription, thereby attenuating airway inflammation and remodeling in asthmatic mice.


Assuntos
Remodelação das Vias Aéreas , Asma , Glucosídeos , MicroRNAs , Fenóis , Proteínas Supressoras da Sinalização de Citocina , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Ovalbumina , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras da Sinalização de Citocina/metabolismo
18.
J Nanobiotechnology ; 20(1): 172, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366907

RESUMO

BACKGROUND: The identification of indeterminate pulmonary nodules (IPNs) following a low-dose computed tomography (LDCT) is a major challenge for early diagnosis of lung cancer. The inadequate assessment of IPNs' malignancy risk results in a large number of unnecessary surgeries or an increased risk of cancer metastases. However, limited studies on non-invasive diagnosis of IPNs have been reported. METHODS: In this study, we identified and evaluated the diagnostic value of circulating small extracellular vesicle (sEV) microRNAs (miRNAs) in patients with IPNs that had been newly detected using LDCT scanning and were scheduled for surgery. Out of 459 recruited patients, 109 eligible patients with IPNs were enrolled in the training cohort (n = 47) and the test cohort (n = 62). An external cohort (n = 99) was used for validation. MiRNAs were extracted from plasma sEVs, and assessed using Small RNA sequencing. 490 lung adenocarcinoma samples and follow-up data were used to investigate the role of miRNAs in overall survival. RESULTS: A circulating sEV miRNA (CirsEV-miR) model was constructed from five differentially expressed miRNAs (DEMs), showing 0.920 AUC in the training cohort (n = 47), and further identified in the test cohort (n = 62) and in an external validation cohort (n = 99). Among five DEMs of the CirsEV-miR model, miR-101-3p and miR-150-5p were significantly associated with better overall survival (p = 0.0001 and p = 0.0069). The CirsEV-miR scores were calculated, which significantly correlated with IPNs diameters (p < 0.05), and were able to discriminate between benign and malignant PNs (diameter ≤ 1 cm). The expression patterns of sEV miRNAs in the benign, adenocarcinoma in situ/minimally invasive adenocarcinoma, and invasive adenocarcinoma subgroups were found to gradually change with the increase in aggressiveness for the first time. Among all DEMs of the three subgroups, five miRNAs (miR-30c-5p, miR-30e-5p, miR-500a-3p, miR-125a-5p, and miR-99a-5p) were also significantly associated with overall survival of lung adenocarcinoma patients. CONCLUSIONS: Our results indicate that the CirsEV-miR model could help distinguish between benign and malignant PNs, providing insights into the feasibility of circulating sEV miRNAs in diagnostic biomarker development. TRIAL REGISTRATION: Chinese Clinical Trials: ChiCTR1800019877. Registered 05 December 2018, https://www.chictr.org.cn/showproj.aspx?proj=31346 .


Assuntos
MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Detecção Precoce de Câncer , Vesículas Extracelulares/genética , Humanos , MicroRNAs/genética
19.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361800

RESUMO

Methionine aminopeptidases (MetAPs) catalyze the cleavage of the N-terminal initiator methionine (iMet) in new peptide chains and arylamides, which is essential for protein and peptide synthesis. MetAP is differentially expressed in two diamondback moth (DBM; Plutella xylostella) strains: the G88 susceptible strain and the Cry1S1000 strain, which are resistant to the Bt toxin Cry1Ac, implicating that MetAP expression might be associated with Bt resistance. In this study, we identified and cloned a MetAP gene from DBMs, named PxMetAP1, which has a CDS of 1140 bp and encodes a 379 amino acid protein. The relative expression of PxMetAP1 was found to be ~2.2-fold lower in the Cry1S1000 strain compared to that in the G88 strain. PxMetAP1 presents a stage- and tissue-specific expression pattern, with higher levels in the eggs, adults, integument, and fatbody of DBMs. The linkage between PxMetAP1 and Cry1Ac resistance is verified by genetic linkage analysis. The knockout of PxMetAP1 in G88 by CRISPR/Cas9 leads to a ~5.6-fold decrease in sensitivity to the Cry1Ac toxin, further supporting the association between the PxMetAP1 gene and Bt tolerance. Our research sheds light on the role of MetAP genes in the development of Bt tolerance in P. xylostella and enriches the knowledge for the management of such a cosmopolitan pest.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mariposas/metabolismo , Metionil Aminopeptidases/metabolismo , Metionina/metabolismo , Larva/metabolismo
20.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361828

RESUMO

The CRISPR/Cas9 system is an efficient tool for reverse genetics validation, and the application of this system in the cell lines provides a new perspective on target gene analysis for the development of biotechnology tools. However, in the cell lines of diamondback moth, Plutella xylostella, the integrity of the CRISPR/Cas9 system and the utilization of this cell lines still need to be improved to ensure the application of the system. Here, we stabilize the transfection efficiency of the P. xylostella cell lines at different passages at about 60% by trying different transfection reagents and adjusting the transfection method. For Cas9 expression in the CRIPSPR/Cas9 system, we identified a strong endogenous promoter: the 217-2 promoter. The dual-luciferase and EGFP reporter assay demonstrated that it has a driving efficiency close to that of the IE1 promoter. We constructed pB-Cas9-Neo plasmid and pU6-sgRNA plasmid for CRISPR/Cas9 system and subsequent cell screening. The feasibility of the CRISPR/Cas9 system in P. xylostella cell lines was verified by knocking out endogenous and exogenous genes. Finally, we generated a transgenic Cas9 cell line of P. xylostella that would benefit future exploitation, such as knock-in and multi-threaded editing. Our works provides the validity of the CRISPR/Cas9 system in the P. xylostella cell lines and lays the foundation for further genetic and molecular studies on insects, particularly favoring gene function analysis.


Assuntos
Edição de Genes , Mariposas , Animais , Mariposas/genética , Sistemas CRISPR-Cas/genética , Animais Geneticamente Modificados , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA