Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 347-355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37443381

RESUMO

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

2.
Opt Express ; 30(23): 42605-42613, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366711

RESUMO

Graphene/ZnS hybrid-dimensional heterostructure is an excellent combination to regulate and improve the conductivity and sensitivity of components, in which the interface effects have crucial impacts on the performance of devices. In this work, we investigate the interface characteristics of Graphene/ZnS 2D/3D heterostructures. X-ray photoelectron spectra show that the ZnS binding energy shifts to lower energy by 0.3 eV after forming heterojunction with graphene. The fluorescence and absorption spectra confirm the luminescence enhancement and blue-shift of the absorbance edge of ZnS caused by graphene. The composition of Graphene/ZnS heterostructure facilitates separation and transfer of spatial charges, resulting in rapid electron transport.

3.
Small ; 17(45): e2103442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569140

RESUMO

Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.


Assuntos
Semicondutores , Análise Espectral Raman , Gálio , Reprodutibilidade dos Testes
4.
Nanotechnology ; 33(8)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787100

RESUMO

Strain engineering can effectively modify the materials lattice parameters at atomic scale, hence it has become an efficient method for tuning the physical properties of two-dimensional (2D) materials. The study of the strain regulated interlayer coupling is deserved for different kinds of heterostructures. Here, we systematically studied the strain engineering of WSe2/WS2heterostructures as well as their constituent monolayers. The measured Raman and photoluminescence spectra demonstrate that the strain can evidently modulate the phonon energy and exciton emission of monolayer WSe2and WS2as well as the WSe2/WS2heterostructures. The tensile strain can tune the electronic band structure of WSe2/WS2heterostructure, as well as enhance the interlayer coupling. It is further revealed that the photoluminescence intensity ratio of WS2to WSe2in our WSe2/WS2heterobilayer increases monotonically with tensile strain. These findings can broaden the understanding and practical application of strain engineering in 2D materials with nanometer-scale resolution.

5.
Small ; 14(21): e1800365, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29683270

RESUMO

Transition metal dichalcogenide (TMD) heterostructures have been widely explored due to the formation of type-II band alignment and interlayer exciton. However, the studies of type-I TMD heterostructures are still lacking, which limit their applications in luminescence devices. Here, the 1L/nL MX2 (n = 2, 3, 4; M = Mo, W; X = S, Se) lateral homojunction based on the layer-dependent band gaps of TMD nanosheets is theoretically simulated. The studies show that the TMD homojunction presents with high thermal stability and type-I band alignment. The band offset and quantum confinement of carriers can be easily tuned by controlling the thickness of the multilayer region. Moreover, the electric field can decrease the band gaps of 1L/3L and 1L/4L homojunctions linearly. Interestingly, for the 1L/2L MX2 homojunction, the gap value is robust to the weak electric field, while it drops sharply under a strong electric field. This study sheds light on the physical pictures in the TMD lateral homojunction, and provides a practicable and general approach to engineer a type-I homojunction based 2D semiconductor materials.

6.
Nanotechnology ; 28(19): 195702, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28333687

RESUMO

In a fast developing field, it has been found that van der Waals heterostructures can overcome the weakness of single two-dimensional layered materials and extend their electronic and optoelectronic applications. Through first-principles methods, the studied MoS2/stanene heterostructure preserves high-speed carrier characteristics and opens the direct band gap. Simultaneously, the band alignment shows that the electrons transfer from stanene to MoS2, which forms an internal electric field. As an effective strategy, the out-of-plane strain remarkably changes the band gaps of the heterostructure and enhances its carrier concentration. In addition, the combined effects of the internal and external electric fields can further open the band gaps and induce a direct-to-indirect gap transition in the heterostructure. More interestingly, when the external electric field is equal to the reverse internal one, the heterostructure regains a Dirac cone. Our results show that the MoS2/stanene heterostructure has potential applications in high-speed optoelectronic devices.

7.
Phys Chem Chem Phys ; 19(7): 5423-5429, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28165080

RESUMO

Based on first-principles calculations, we investigated the adsorption energy, structural parameters, and electronic and magnetic properties for the adsorption of different atoms, including light metals, hydrogen, oxygen, and 3D transition metals (TM) adatoms, on a tin sulfide (SnS) monolayer. The results showed that Li- and Al-atom adsorption can effectively induce n-type carriers, whereas O atom adsorption can produce p-type doping in the SnS monolayer. In addition, except for Ni atoms, the other adatoms can induce magnetism in the SnS monolayer. Moreover, for Fe- and Co-atom adsorption, the occupied and unoccupied states belong to the same spin-channel. These results indicate that surface adsorption is an effective method to tune the electronic structures of the SnS monolayer.

8.
Phys Chem Chem Phys ; 18(32): 22678-86, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27476579

RESUMO

Based on first-principles calculations, the electronic structures and magnetism are investigated in 3d transition metal (TM)-embedded porous two-dimensional (2D) C2N monolayers. Numerical results indicate that except Mn and Co atoms, other TM atoms can be embedded stably in the 2D C2N monolayer. Moreover, the magnetic moments of the TM-embedded C2N monolayer depend highly on the atomic number of the TM atoms. The Sc, Ti, V, Cr, Mn, Fe, Co and Ni atom-embedded C2N monolayers possess a ferromagnetic ground state, while embedding Cu can induce paramagnetic characteristics in the 2D C2N monolayer. Meanwhile, the Zn-embedded C2N monolayer exhibits a nonmagnetic ground state. These results indicate that the magnetism of 2D C2N monolayers can be tuned via embedding TM atoms.

9.
Phys Chem Chem Phys ; 18(9): 6534-40, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26865500

RESUMO

The electronic structures and magnetic properties of stanene nanoribbons (SnNRs) were studied using first-principle calculations, considering the spin-orbit coupling (SOC) effects and edge passivation. The results show that all considered armchair SnNRs are nonmagnetic semiconductors with gap values as a periodic oscillation function of ribbon width. The zigzag SnNRs present the antiferromagnetic ground states with opposite spin order between the two edges, and the gaps decrease as the ribbon widths increase. The influences of dangling bonds are obvious on the ferromagnetic moments of zigzag SnNRs. The SOC effects can open the band gap values of stanene sheets and zigzag SnNRs, but reduce the band gap of armchair SnNRs, which indicates that stanene nanostructures may be applied in the fields of spinelectronics and quantum spin Hall.

10.
Phys Chem Chem Phys ; 18(41): 28759-28766, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27722458

RESUMO

The electronic structures and magnetism of defect- and transition metal (TM)-embedded stanene monolayers are investigated by using first-principles methods. Single vacancy (SV) and double vacancy (DV) cannot induce magnetism, while embedding a TM can effectively tune the magnetic moments of the stanene monolayer. Moreover, the results show that all 3d TM-embedded stanene monolayers are stable. The TM-embedded SV is easier to form than DV. For TM-embedded SV systems, the Ti-embedded case presents half-metallic properties. However, for TM-embedded DV systems, the Ti-embedded system is a magnetic semiconductor and spin-orbit coupling (SOC) effects remarkably increase its band gap. Interestingly, the SOC interaction induces electronic phase transition from the semiconductor to the half-metal (metal) for Ni (Zn)-embedded DV systems. These results provide a promising route to design stanene-based spintronics devices.

11.
Phys Chem Chem Phys ; 18(40): 27750-27753, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711489

RESUMO

Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe2 and n-type multilayer WS2: (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe2/WS2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

12.
Nanoscale Horiz ; 9(3): 449-455, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198181

RESUMO

Experiments have shown that nanoscale ripples in a graphene membrane exhibit unexpectedly high catalytic activity with respect to hydrogen dissociation. Nonetheless, the catalytic selectivity of nanorippled graphene remains unknown, which is an equally important property for assessing a catalyst's potential and its fit-for-purpose applications. Herein, we examine the catalytic selectivity of nanorippled graphene using a model reaction of molecular hydrogen with another simple but double-bonded molecule, oxygen, and comparing the measurement results with those from splitting of hydrogen molecules. We show that although nanorippled graphene exhibits a high catalytic activity toward hydrogen dissociation, the activity for catalyzing the hydrogen-oxygen reaction is quite low, translating into a strong catalytic selectivity. The latter reaction involves the reduction of oxygen molecules by the dissociated hydrogen adatoms, which requires additional energy cost and practically determines the selectivity. In this sense, the well-established information about reactions in general of atomic hydrogen with many other species in the literature could potentially predict the selectivity of nanorippled graphene as a catalyst. Our work provides implications for the catalytic properties of nanorippled graphene, especially its selectivity. The results would be important for its extension to a wider range of reactions and for designer technologies involving hydrogen.

13.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174652

RESUMO

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

14.
Adv Mater ; 35(51): e2306850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688530

RESUMO

The ultrathin thickness of 2D layered materials affords the control of their properties through defects, surface modification, and electrostatic fields more efficiently compared with bulk architecture. In particular, patterning design, such as moiré superlattice patterns and spatially periodic dielectric structures, are demonstrated to possess the ability to precisely control the local atomic and electronic environment at large scale, thus providing extra degrees of freedom to realize tailored material properties and device functionality. Here, the scalable atomic-scale patterning in superionic cuprous telluride by using the bonding difference at nonequivalent copper sites is reported. Moreover, benefitting from the natural coupling of ordered and disordered sublattices, controllable piezoelectricity-like multilevel switching and bipolar switching with the designed crystal structure and electrical contact is realized, and their application in image enhancement is demonstrated. This work extends the known classes of patternable crystals and atomic switching devices, and ushers in a frontier for image processing with memristors.

15.
J Phys Condens Matter ; 35(4)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541492

RESUMO

Van der Waals heterostructures (vdWHs) which combine two different materials together have attracted extensive research attentions due to the promising applications in optoelectronic and electronic devices, the investigations from theoretical simulations can not only predict the novel properties and the interfacial coupling, but also provide essential guidance for experimental verification and fabrications. This review summarizes the recent theoretical studies on electronic and optical properties of two-dimensional semiconducting vdWHs. The characteristics of different band alignments are discussed, together with the optoelectronic modulations from external fields and the promising applications in solar cells, tunneling field-effect transistors and photodetectors. At the end of the review, the further perspective and possible research problems of the vdWHs are also presented.

16.
Natl Sci Rev ; 9(5): nwab153, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35591917

RESUMO

Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO, as well as inspiration for the precise growth of other non-layered 2D materials.

17.
ACS Nano ; 16(10): 17087-17096, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227156

RESUMO

One-dimensional (1D) arsenene nanostructures are predicted to host a variety of interesting physical properties including antiferromagnetic, semiconductor-semimetal transition and quantum spin Hall effect, which thus holds great promise for next-generation electronic and spintronic devices. Herein, we devised a surface template strategy in a combination with surface-catalyzed decomposition of molecular As4 cluster toward the synthesis of the superlattice of ultranarrow armchair arsenic nanochains in a large domain on Au(111). In the low annealing temperature window, zero-dimensional As4 nanoclusters are assembled into continuous films through intermolecular van der Waals and molecule-substrate interactions. At the elevated temperature, the subsequent surface-assisted decomposition of molecular As4 nanoclusters leads to the formation of a periodic array of 1D armchair arsenic nanochains that form a (2 × 3) superstructure on the Au(111) surface. These ultranarrow armchair arsenic nanochains are predicted to have a small bandgap of ∼0.50 eV, in contrast to metallic zigzag chains. In addition, the Au-supported arsenic nanochains can be flipped to form a bilayer structure through tip indentation and manipulation, suggesting the possible transfer of these nanochains from the substrate. The successful realization of arsenic nanostructures is expected to advance low-dimensional physics and infrared optoelectronic nanodevices.

18.
Nat Commun ; 13(1): 5241, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068242

RESUMO

The discovery of magnetism in ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. Nevertheless, two-dimensional magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Ferrites with strongly correlated d-orbital electrons may be alternative candidates offering two-dimensional high-temperature magnetic ordering. This prospect is, however, hindered by their inherent three-dimensional bonded nature. Here, we develop a confined-van der Waals epitaxial approach to synthesizing air-stable semiconducting cobalt ferrite nanosheets with thickness down to one unit cell using a facile chemical vapor deposition process. The hard magnetic behavior and magnetic domain evolution are demonstrated by means of vibrating sample magnetometry, magnetic force microscopy and magneto-optical Kerr effect measurements, which shows high Curie temperature above 390 K and strong dimensionality effect. The addition of room-temperature magnetic semiconductors to two-dimensional material family provides possibilities for numerous novel applications in computing, sensing and information storage.

19.
RSC Adv ; 11(57): 35954-35959, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492743

RESUMO

Tremendous attention has been paid to vertically stacked heterostructures owing to their tunable electronic structures and outstanding optical properties. In this work, we explore the structural, electronic and optical properties of vertically stacked GaN/WX2 (X = S, Se, Te) heterostructures using density functional theory. We find that these stacking heterostructures are all semiconductors with direct band gaps of 1.473 eV (GaN/WTe2), 2.102 eV (GaN/WSe2) and 1.993 eV (GaN/WS2). Interestingly, the GaN/WS2 heterostructure exhibits a type-II band alignment, while the other two stackings of GaN/WSe2 and GaN/WTe2 heterostructures have type-I band alignment. The optical absorption of GaN/WX2 heterostructures is very efficient in the visible light spectrum. Our results suggest that GaN/WX2 heterostructures are promising candidates for photocatalytic water splitting and photoelectronic devices in visible light.

20.
J Colloid Interface Sci ; 584: 789-794, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268066

RESUMO

HYPOTHESIS: Molecular extraction efficiency can be boosted with the assistance of nanoparticles (NPs). It is based on adsorption of the extractants in one phase and desorption in another phase, which requires a reversible phase transfer of the NPs. EXPERIMENTS: We synthesized the gold@poly(N-isopropylacryamide) (Au@PNIPAM) NPs via an interfacial self-assembly method enhanced by post-polymerization. We adopted Rhodamine 6G (R6G) as the model molecule for the extraction test. In comparison, UV-Vis extinction spectra were recorded to monitor the extraction processes with or without the Au@PNIPAM NPs. We further analyzed theoretically with thermodynamics and first-principle calculations. FINDINGS: The hybrid Au@PNIPAM NPs show a reversible phase transfer between the interface and chloroform phases. The Au NPs assisted extraction efficiency of R6G shows 5 times higher than that without Au NPs. The thermodynamic analysis of the nanotransportation system agrees well with the ab initio density functional theory calculations. This nanoparticle-assisted molecular transportation modifies the extraction kinetics significantly, which will provide further implications for biphasic catalysis, pollutant treatment and drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA