RESUMO
UNLABELLED: This study focused on an endophytic bacterial strain, Pantoea sp. Sd-1, which can be used to degrade lignin and rice straw. This strain was isolated from rice seeds by an optimized surface sterilization method. Pantoea sp. Sd-1 showed exceptional ability to degrade rice straw and lignin. In rice straw or kraft lignin-containing medium supplemented with 1% glucose and 0.5% peptone, Pantoea sp. Sd-1 effectively reduced the rice straw mass weight by 54.5% after 6 days of treatment. The strain was also capable of reducing the lignin colour (52.4%) and content (69.1%) after 4 days of incubation. The findings suggested that the rice endophytic bacterium Pantoea sp. Sd-1 could be applied for the degradation of lignocellulose biomass, such as rice straw. SIGNIFICANCE AND IMPACT OF THE STUDY: Rice straw, an abundant agricultural by-product in China, is very difficult to degrade because of its high lignin content. Due to the immense environmental adaptability and biochemical versatility of bacteria, endophytic bacteria are useful resources for biodegradation. In this study, we screened for endophytic bacteria capable of biodegrading rice straw and lignin and obtained one strain, Pantoea sp. Sd-1, with suitable characteristics. Sd-1 could be used for degradation of rice straw and lignin, and may play an important role in biodegradation of this agricultural by-product.
Assuntos
Endófitos/isolamento & purificação , Endófitos/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Pantoea/isolamento & purificação , Pantoea/metabolismo , Biodegradação Ambiental , China , Sementes/microbiologiaRESUMO
Persistent excessive sympathetic activation greatly contributes to the pathogenesis of chronic heart failure (CHF) and hypertension. Cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex with positive feedback characteristics. Humoral factors such as bradykinin, adenosine and reactive oxygen species produced in myocardium due to myocardial ischaemia stimulate cardiac sympathetic afferents and thereby reflexly increase sympathetic activity and blood pressure. The CSAR is enhanced in myocardial ischaemia, CHF and hypertension. The enhanced CSAR at least partially contributes to the sympathetic activation and pathogenesis of these diseases. Nucleus of the solitary tract (NTS), hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla are the most important central sites involved in the modulation and integration of the CSAR. Angiotensin II, AT1 receptors and NAD(P)H oxidase-derived superoxide anions pathway in the PVN are mainly responsible for the enhanced CSAR in CHF and hypertension. Central angiotensin-(1-7), nitric oxide, endothelin, intermedin, hydrogen peroxide and several other signal molecules are involved in regulating CSAR. Blockade of the CSAR shows beneficial effects in CHF and hypertension. This review focuses on the anatomical and physiological basis of the CSAR, the interaction of CSAR with baroreflex and chemoreflex, and the role of enhanced CSAR in the pathogenesis of CHF and hypertension.
Assuntos
Fibras Adrenérgicas/fisiologia , Vias Aferentes/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão/fisiopatologia , Reflexo/fisiologia , HumanosRESUMO
Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.
Assuntos
Tecido Adiposo Branco/fisiologia , Hipertensão/fisiopatologia , Obesidade/fisiopatologia , Reflexo/fisiologia , Sistema Nervoso Simpático/fisiologia , Humanos , Hipertensão/complicações , Obesidade/complicaçõesRESUMO
AIMS: Apelin is a specific endogenous ligand of orphan G protein-coupled receptor APJ. This study was designed to determine the roles and mechanisms of apelin-13 and APJ in paraventricular nucleus (PVN) in renal sympathetic nerve activity (RSNA), arginine vasopressin (AVP) release and mean arterial pressure (MAP) in spontaneously hypertensive rats (SHR). METHOD: Acute experiment was carried out in 13-week-old male SHR and Wistar-Kyoto rats (WKY) under anaesthesia. RSNA and MAP responses to the PVN microinjection were determined. Apelin and APJ expressions were examined with quantitative real-time PCR and Western blot. AVP and noradrenaline were determined with ELISA. Osmotic minipumps were used for chronic PVN infusion in conscious WKY. RESULTS: Apelin and APJ in the PVN were up-regulated in SHR. The PVN microinjection of apelin-13 increased, but APJ antagonist F13A decreased the RSNA, MAP, plasma noradrenaline and AVP levels in SHR. N-methyl-D-aspartate receptor (NMDAR) antagonist plus non-NMDAR antagonist abolished the apelin-13-induced sympathetic activation rather than AVP release. NMDAR antagonist or non-NMDAR antagonist alone attenuated the apelin-13-induced sympathetic activation. Chronic infusion of apelin-13 into the PVN in normotensive rats induced hypertension, increased plasma noradrenaline and AVP levels and promoted myocardial atrial natriuretic peptide and beta-myosin heavy chain mRNA expressions, two indicative markers of cardiac hypertrophy. CONCLUSION: Apelin-13 and APJ in the PVN contribute to hypertension via sympathetic activation and AVP release in SHR. The sympatho-excitatory effect of apeline-13 is mediated by both NMDAR and non-NMDAR in the PVN. Persistent activation of APJ in the PVN induces hypertension.