Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400179, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031523

RESUMO

With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.

2.
Micromachines (Basel) ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675305

RESUMO

As a type of ultra-high strength steel, AerMet100 steel is used in the aerospace and military industries. Due to the fact that AerMet100 steel is difficult to machine, people have been exploring the process of additive manufacturing to fabricate AerMet100 steel. In this study, AerMet100 steel was produced using an in situ rolling hybrid with wire arc additive manufacturing. Microstructure, tensile properties, and fracture toughness of as-deposited and heat-treated AerMet100 steel were evaluated in different directions. The results reveal that the manufacturing process leads to grain fragmentation and obvious microstructural refinement of the AerMet100 steel, and weakens the anisotropy of the mechanical properties. After heat treatment, the microstructure of the AerMet100 steel is mainly composed of lath martensite and reversed austenite. Alloy carbides are precipitated within the martensitic matrix, and a high density of dislocations is the primary strengthening mechanism. The existence of film-like austenite among the martensite matrix enhances the toughness of AerMet100 steel, which coordinates stress distribution and restrains crack propagation, resulting in an excellent balance between strength and toughness. The AerMet100 steel with in situ rolling is isotropy and achieves the following values: an average ultimate strength of 1747.7 ± 16.3 MPa, yield strength of 1615 ± 40.6 MPa, elongation of 8.3 ± 0.2% in deposition direction, and corresponding values in the building direction are 1821.3 ± 22.1 MPa, 1624 ± 84.5 MPa, and 7.6 ± 1.7%, and the KIC value up to 70.6 MPa/m0.5.

3.
Obes Surg ; 32(11): 3581-3588, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35945365

RESUMO

BACKGROUND: We aimed to determine the magnitude, direction, and influencing factors of the concordance between arterial oxygen saturation (SaO2) and peripheral capillary oxygen saturation (SpO2) in patients with obesity undergoing bariatric surgery, supporting the measurement of SaO2 and SpO2 in key populations. METHODS: Patients with obesity undergoing bariatric surgery from 2017 to 2020 were included. Preoperative SpO2 and SaO2 were collected. Linear correlation and multiple linear regression analyses were performed to characterize the relationships between body mass index (BMI), age, and sex with pulse oximetry and arterial blood gas (ABG) parameters. Bland-Altman analysis was applied to determine the concordance between SpO2 and SaO2 and the limits of this concordance. RESULTS: A total of 134 patients with obesity undergoing bariatric surgery were enrolled. SaO2 was negatively associated with BMI (p < 0.0001) and age (p = 0.006), and SpO2 was negatively associated with BMI (p = 0.021) but not with age. SpO2 overestimated SaO2 in 91% of patients with a bias of 2.05%. This bias increased by 203% in hypoxemic patients compared with nonhypoxemic patients (p < 0.0001). The bias was 1.3-fold higher (p = 0.023) in patients with a high obesity surgery mortality risk score (OS-MRS) than in those with low or intermediate scores. CONCLUSION: Compared with SpO2, preoperative SaO2 can more accurately reflect the real oxygen saturation in patients with obesity undergoing bariatric surgery, especially for those with BMI ≥ 40 kg/m2, age ≥ 40 years, and high OS-MRS. ABG analysis can provide a more reliable basis for accurate and timely monitoring, ensuring the perioperative safety of susceptible patients.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Adulto , Saturação de Oxigênio , Oxigênio , Obesidade Mórbida/cirurgia , Oximetria
4.
Elife ; 102021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622775

RESUMO

The elucidation of the mechanisms whereby the liver maintains glucose homeostasis is crucial for the understanding of physiological and pathological states. Here, we show a novel role of hepatic transcriptional co-activator with PDZ-binding motif (TAZ) in the inhibition of glucocorticoid receptor (GR). TAZ is abundantly expressed in pericentral hepatocytes and its expression is markedly reduced by fasting. TAZ interacts via its WW domain with the ligand-binding domain of GR to limit the binding of GR to the GR response element in gluconeogenic gene promoters. Therefore, liver-specific TAZ knockout mice show increases in glucose production and blood glucose concentration. Conversely, the overexpression of TAZ in mouse liver reduces the binding of GR to gluconeogenic gene promoters and glucose production. Thus, our findings demonstrate that hepatic TAZ inhibits GR transactivation of gluconeogenic genes and coordinates gluconeogenesis in response to physiological fasting and feeding.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Gluconeogênese/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Receptores de Glucocorticoides/fisiologia , Animais , Glicemia , Homeostase , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA