Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(39)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37364540

RESUMO

Uniform-size, non-native oxide-passivated metallic aluminum nanoparticles (Al NPs) have desirable properties for fuel applications, battery components, plasmonics, and hydrogen catalysis. Nonthermal plasma-assisted synthesis of Al NPs was previously achieved with an inductively coupled plasma (ICP) reactor, but the low production rate and limited tunability of particle size were key barriers to the applications of this material. This work focuses on the application of capacitively coupled plasma (CCP) to achieve improved control over Al NP size and a ten-fold increase in yield. In contrast with many other materials, where NP size is controlled via the gas residence time in the reactor, the Al NP size appeared to depend on the power input to the CCP system. The results indicate that the CCP reactor assembly, with a hydrogen-rich argon/hydrogen plasma, was able to produce Al NPs with diameters that were tunable between 8 and 21 nm at a rate up ∼ 100 mg h-1. X-ray diffraction indicates that a hydrogen-rich environment results in crystalline metal Al particles. The improved synthesis control of the CCP system compared to the ICP system is interpreted in terms of the CCP's lower plasma density, as determined by double Langmuir probe measurements, leading to reduced NP heating in the CCP that is more amenable to NP nucleation and growth.

2.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242045

RESUMO

Gamma alumina (γ-Al2O3) is widely used as a catalyst and catalytic support due to its high specific surface area and porosity. However, synthesis of γ-Al2O3 nanocrystals is often a complicated process requiring high temperatures or additional post-synthetic steps. Here, we report a single-step synthesis of size-controlled and monodisperse, facetted γ-Al2O3 nanocrystals in an inductively coupled nonthermal plasma reactor using trimethylaluminum and oxygen as precursors. Under optimized conditions, we observed phase-pure, cuboctahedral γ-Al2O3 nanocrystals with defined surface facets. Nuclear magnetic resonance studies revealed that nanocrystal surfaces are populated with AlO6, AlO5 and AlO4 units with clusters of hydroxyl groups. Nanocrystal size tuning was achieved by varying the total reactor pressure yielding particles as small as 3.5 nm, below the predicted thermodynamic stability limit for γ-Al2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA