Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell ; 31(1): 153-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606781

RESUMO

Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is initiated upon PAMP recognition by pattern recognition receptors (PRR). PTI signals are transmitted through activation of mitogen-activated protein kinases (MAPKs), inducing signaling and defense processes such as reactive oxygen species (ROS) production and callose deposition. Here, we examine mutants for two Arabidopsis thaliana genes encoding homologs of UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2), a conserved endoplasmic reticulum (ER) protein implicated in ER protein quality control. The ubac2 mutants were hypersusceptible to a type III secretion-deficient strain of the bacterial pathogen Pseudomonas syringae, indicating a PTI defect. The ubac2 mutants showed normal PRR biogenesis, MAPK activation, ROS burst, and PTI-associated gene expression. Pathogen- and PAMP-induced callose deposition, however, was compromised in ubac2 mutants. UBAC2 proteins interact with the plant-specific long coiled-coil protein PAMP-INDUCED COILED COIL (PICC), and picc mutants were compromised in callose deposition and PTI. Compromised callose deposition in the ubac2 and picc mutants was associated with reduced accumulation of the POWDERY MILDEW RESISTANT 4 (PMR4) callose synthase, which is responsible for pathogen-induced callose synthesis. Constitutive overexpression of PMR4 restored pathogen-induced callose synthesis and PTI in the ubac2 and picc mutants. These results uncover an ER pathway involving the conserved UBAC2 and plant-specific PICC proteins that specifically regulate pathogen-induced callose deposition in plant innate immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Mutação/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidade
2.
BMC Plant Biol ; 21(1): 309, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210268

RESUMO

BACKGROUND: Phytohormone abscisic acid (ABA) is involved in the regulation of a wide range of biological processes. In Arabidopsis, it has been well-known that SnRK2s are the central components of the ABA signaling pathway that control the balance between plant growth and stress response, but the functions of ZmSnRK2 in maize are rarely reported. Therefore, the study of ZmSnRK2 is of great importance to understand the ABA signaling pathways in maize. RESULTS: In this study, 14 ZmSnRK2 genes were identified in the latest version of maize genome database. Phylogenetic analysis revealed that ZmSnRK2s are divided into three subclasses based on their diversity of C-terminal domains. The exon-intron structures, phylogenetic, synteny and collinearity analysis indicated that SnRK2s, especially the subclass III of SnRK2, are evolutionally conserved in maize, rice and Arabidopsis. Subcellular localization showed that ZmSnRK2 proteins are localized in the nucleus and cytoplasm. The RNA-Seq datasets and qRT-PCR analysis showed that ZmSnRK2 genes exhibit spatial and temporal expression patterns during the growth and development of different maize tissues, and the transcript levels of some ZmSnRK2 genes in kernel are significantly induced by ABA and sucrose treatment. In addition, we found that ZmSnRK2.10, which belongs to subclass III, is highly expressed in kernel and activated by ABA. Overexpression of ZmSnRK2.10 partially rescued the ABA-insensitive phenotype of snrk2.2/2.3 double and snrk2.2/2.3/2.6 triple mutants and led to delaying plant flowering in Arabidopsis. CONCLUSION: The SnRK2 gene family exhibits a high evolutionary conservation and has expanded with whole-genome duplication events in plants. The ZmSnRK2s expanded in maize with whole-genome and segmental duplication, not tandem duplication. The expression pattern analysis of ZmSnRK2s in maize offers important information to study their functions. Study of the functions of ZmSnRK.10 in Arabidopsis suggests that the ABA-dependent members of SnRK2s are evolutionarily conserved in plants. Our study elucidated the structure and evolution of SnRK2 genes in plants and provided a basis for the functional study of ZmSnRK2s protein in maize.


Assuntos
Ácido Abscísico/metabolismo , Genes de Plantas , Transdução de Sinais , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Frações Subcelulares/metabolismo , Sintenia/genética
3.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109305

RESUMO

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Triticum/genética , Desidratação/genética , Desidratação/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Fusarium , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia
4.
New Phytol ; 224(2): 961-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31168798

RESUMO

De-domestication is a unique evolutionary process during which crops re-acquire wild-like traits to survive and persist in agricultural fields without the need for human cultivation. The re-acquisition of seed dispersal mechanisms is crucial for crop de-domestication. Common wheat is an important cereal crop worldwide. Tibetan semi-wild wheat is a potential de-domesticated common wheat subspecies. However, the crucial genes responsible for its brittle rachis trait have not been identified. Genetic mapping, functional analyses and phylogenetic analyses were completed to identify the gene associated with Qbr.sau-5A, which is a major locus for the brittle rachis trait of Tibetan semi-wild wheat. The cloned Qbr.sau-5A gene is a new Q allele (Qt ) with a 161-bp transposon insertion in exon 5. Although Qt is expressed normally, its encoded peptide lacks some key features of the APETALA2 family. The abnormal functions of Qt in developing wheat spikes result in brittle rachises. Phylogenetic and genotyping analyses confirmed that Qt originated from Q in common wheat and is naturally distributed only in Tibetan semi-wild wheat populations. The identification of Qt provides new evidence regarding the origin of Tibetan semi-wild wheat, and new insights into the re-acquisition of wild traits during crop de-domestication.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Mutagênese Insercional/genética , Triticum/genética , Triticum/fisiologia , Evolução Biológica , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
5.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103374

RESUMO

ATP-binding cassette (ABC) transporters hydrolyze ATP to transport a wide range of substrates. Fusarium graminearum is a major causal agent of Fusarium head blight, which is a severe disease in wheat worldwide. FgABCC9 (FG05_07325) encodes an ABC-C (ABC transporter family C) transporter in F. graminearum, which was highly expressed during the infection in wheat and was up-regulated by the plant defense hormone salicylic acid (SA) and the fungicide tebuconazole. The predicted tertiary structure of the FgABCC9 protein was consistent with the schematic of the ABC exporter. Deletion of FgABCC9 resulted in decreased mycelial growth, increased sensitivity to SA and tebuconazole, reduced accumulation of deoxynivalenol (DON), and less pathogenicity towards wheat. Re-introduction of a functional FgABCC9 gene into ΔFgABCC9 recovered the phenotypes of the wild type strain. Transgenic expression of FgABCC9 in Arabidopsis thaliana increased the accumulation of SA in its leaves without activating SA signaling, which suggests that FgABCC9 functions as an SA exporter. Taken together, FgABCC9 encodes an ABC exporter, which is critical for fungal exportation of SA, response to tebuconazole, mycelial growth, and pathogenicity towards wheat.


Assuntos
Farmacorresistência Fúngica/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Receptores de Sulfonilureias/metabolismo , Triticum/microbiologia , Antifúngicos/farmacologia , Arabidopsis/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Micélio/genética , Receptores de Sulfonilureias/genética
6.
J Bacteriol ; 198(19): 2673-81, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185826

RESUMO

During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Bactérias/genética , Sítios de Ligação , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Mutação , Ligação Proteica , Pseudomonas aeruginosa/genética
7.
PLoS Pathog ; 10(3): e1003984, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603766

RESUMO

The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/biossíntese , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Imunoprecipitação da Cromatina , Cromatografia Líquida , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica/fisiologia , Espectrometria de Massas , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano , Fatores de Transcrição/metabolismo , Virulência/fisiologia
8.
PLoS Pathog ; 8(4): e1002648, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511872

RESUMO

AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation.


Assuntos
Proteínas de Bactérias/biossíntese , Genes Bacterianos/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Elementos de Resposta/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Virulência/biossíntese , Proteínas de Bactérias/genética , Óperon/fisiologia , Ligação Proteica , Multimerização Proteica/fisiologia , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética
9.
Cancer Biomark ; 40(1): 27-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393891

RESUMO

BACKGROUND: Our study aimed to investigate the Hub genes and their prognostic value in colorectal cancer (CRC) via bioinformatics analysis. METHODS: The data set of colorectal cancer was downloaded from the GEO database (GSE21510, GSE110224 and GSE74602) for differential expression analysis using the GEO2R tool. Hub genes were screened by protein-protein interaction (PPI) comprehensive analysis. GEPIA was used to verify the expression of Hub genes and evaluate its prognostic value. The protein expression of Hub gene in CRC was analyzed using the Human Protein Atlas database. The cBioPortal was used to analyze the type and frequency of Hub gene mutations, and the effects of mutation on the patients' prognosis. The TIMER database was used to study the correlation between Hub genes and immune infiltration in CRC. Gene set enrichment analysis (GSEA) was used to explore the biological function and signal pathway of the Hub genes and corresponding co-expressed genes. RESULTS: We identified 346 differentially expressed genes (DEGs), including 117 upregulated and 229 downregulated. Four Hub genes (AURKA, CCNB1, EXO1 and CCNA2) were selected by survival analysis and differential expression validation. The protein and mRNA expression levels of AURKA, CCNB1, EXO1 and CCNA2 were higher in CRC tissues than in adjacent tissues. There were varying degrees of immune cell infiltration and gene mutation of Hub genes, especially B cells and CD8+ T cells. The results of GSEA showed that Hub genes and their co-expressed genes mainly participated in chromosome segregation, DNA replication, translational elongation and cell cycle. CONCLUSION: Overexpression of AURKA, CCNB1, CCNA2 and EXO1 had a better prognosis for CRC and this effect was correlation with gene mutation and infiltration of immune cells.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Biologia Computacional/métodos , Prognóstico , Mapas de Interação de Proteínas/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Ciclina B1/genética , Ciclina A2/genética , Exodesoxirribonucleases/genética , Mutação , Aurora Quinase A/genética , Redes Reguladoras de Genes , Proteínas de Ligação a Poli-ADP-Ribose/genética , Bases de Dados Genéticas , Enzimas Reparadoras do DNA
10.
J Ethnopharmacol ; 319(Pt 3): 117337, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866462

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanxiong, the rhizome of Ligusticum chuanxiong Hort., is an ancient herbal medicine that has gained extensive popularity in alleviating migraines with satisfying therapeutic effects in China. As the major bioactive component of Chuanxiong, the essential oil also exerts a marked impact on the treatment of migraine. It is widely recognized that neuroinflammation contributes to migraine. However, it remains unknown whether Chuanxiong essential oil has anti-neuroinflammatory activity. AIM OF THE STUDY: To explore the anti-neuroinflammatory properties of Chuanxiong essential oil and its molecular mechanisms by network pharmacology analysis and in vitro experiments. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of Chuanxiong essential oil. Public databases were used to predict possible targets, build the protein-protein interaction network (PPI), and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Moreover, cytological experiments, nitric oxide assay, enzyme-link immunosorbent assay, western blotting, and immunofluorescence assay were adopted to prove the critical signaling pathway in lipopolysaccharide (LPS)-induced BV2 cells. RESULTS: Thirty-six compounds were identified from Chuanxiong essential oil by GC-MS, and their corresponding putative targets were predicted. The network pharmacology study identified 232 candidate targets of Chuanxiong essential oil in anti-neuroinflammation. Furthermore, Chuanxiong essential oil was found to potentially affect the C-type lectin receptor, FoxO, and NF-κB signaling pathways according to the KEGG analysis. Experimentally, we verified that Chuanxiong essential oil could significantly reduce the overproduction of inflammatory mediators and pro-inflammatory factors via the NF-κB signaling pathway. CONCLUSION: Chuanxiong essential oil alleviates neuroinflammation through the NF-κB signaling pathway, which provides a theoretical foundation for a better understanding of the clinical application of Chuanxiong essential oil in migraine treatment.


Assuntos
Ligusticum , Transtornos de Enxaqueca , NF-kappa B , Lipopolissacarídeos/toxicidade , Farmacologia em Rede , Doenças Neuroinflamatórias
11.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010278

RESUMO

Tibetan medicines are complex and contain numerous unknown compounds, making in-depth research on their molecular structures crucial. Liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) is commonly used to extract Tibetan medicine; however, many unpredictable unknown compounds remain after using the spectrum database. The present article developed a universal method for identifying components in Tibetan medicine using ion trap mass spectrometry (IT-MS). The method includes standardized and programmed protocols for sample preparation, MS setting, LC prerun, method establishment, MS acquisition, multiple-stage MS operation, and manual data analysis. Two representative compounds in the Tibetan medicine Abelmoschus manihot seeds were identified using multiple-stage fragmentation, with a detailed analysis of typical compound structures. In addition, the article discusses aspects such as ion mode selection, mobile phase adjustment, scanning range optimization, collision energy control, collision mode switchover, fragmentation factors, and limitations of the method. The developed standardized analysis method is universal and can be applied to unknown compounds in Tibetan medicine.


Assuntos
Medicina Tradicional Tibetana , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Estrutura Molecular
12.
BMC Med Genomics ; 16(1): 269, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904220

RESUMO

Schistosoma japonicum infection is an important public health problem and the S. japonicum infection is associated with a variety of diseases, including colorectal cancer. We collected the paraffin samples of CRC patients with or without S. japonicum infection according to standard procedures. Data-Independent Acquisition was used to identify differentially expressed proteins (DEPs), protein-protein interaction (PPI) network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression) were used to identify candidate genes for diagnosing CRC with S. japonicum infection. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. A total of 115 DEPs were screened, the DEPs that were discovered were mostly related with biological process in generation of precursor metabolites and energy,energy derivation by oxidation of organic compounds, carboxylic acid metabolic process, oxoacid metabolic process, cellular respiration aerobic respiration according to the analyses. Enrichment analysis showed that these compounds might regulate oxidoreductase activity, transporter activity, transmembrane transporter activity, ion transmembrane transporter activity and inorganic molecular entity transmembrane transporter activity. Following the development of PPI network and LASSO, 13 genes (hsd17b4, h2ac4, hla-c, pc, epx, rpia, tor1aip1, mindy1, dpysl5, nucks1, cnot2, ndufa13 and dnm3) were filtered, and 3 candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all 3 candidate hub genes (hsd17b4, rpia and cnot2) had high diagnostic values (area under the curve is 0.9556). The results of our study indicate that the combination of hsd17b4, rpia, and cnot2 may become a predictive model for the occurrence of CRC in combination with S. japonicum infection. This study also provides new clues for the mechanism research of S. japonicum infection and CRC.


Assuntos
Coinfecção , Neoplasias Colorretais , Schistosoma japonicum , Esquistossomose Japônica , Humanos , Animais , Proteômica , Biologia Computacional , Aprendizado de Máquina , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
13.
Front Plant Sci ; 14: 1225895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719221

RESUMO

The early spring is a seasonal high-light "window" for new leaf growth and photosynthetic carbon capture by the shade-tolerant evergreen understory plants. However, it remains unclear how light regulates the source-sink relationship between rhizome (RO), mature leaf (ML), and immature leaf (IL) during Coptis chinensis leaf expansion. Understanding this relationship is essential to reducing RO reserve degradation and ultimately promote RO biomass accumulation. The plants grew in an artificial climate chamber with low (50 µmol m-2 s-1) and relatively high (200 µmol m-2 s-1) light intensity treatments. Leaf fluorescence, foliar phosphorus (P) fractions, soluble sugars, starch, total P, and alkaloid concentrations in ILs, MLs, and RO were measured, and 13C labeling was used to indicate the direction of photosynthetic carbon flow between organs. The plants grown under high light intensity had higher levels of starch in RO and higher RO biomass at the end of the year compared to those grown under low light intensity. The photosystem II (PSII) operating efficiency [Y(II)], relative electron transport rate (rETR), and photochemical quenching (qP), as well as sucrose and glucose, in ILs and MLs under relatively high light, was higher than those under low light. The glucose and starch concentrations in ILs at 35 d was significantly higher than that at 15 d when plants were under 200 µmol m-2 s-1, while they were not significantly changed and remained low at 50 µmol m-2 s-1. The 13C was detected in the RO when plants were grown at 200 µmol m-2 s-1, regardless of ILs and MLs 13C labeling, while no 13C was detected in the RO when plants were under 50 µmol m-2 s-1. Additionally, the proportion of photosynthetic transport from ILs to MLs was significantly higher than that from MLs to ILs under the 50-µmol m-2 s-1 limit. Total P concentration in ILs was lower under relatively high light, but there was no difference in nucleic acid P concentration in ILs under the two light intensity treatments. The alkaloid concentration in RO was lower under 200 µmol m-2 s-1 than that under 50 µmol m-2 s-1. We propose that relatively high light reduces the need for carbohydrates and P stored in the RO to support IL growth by (1) accelerating the sink-to-source transition in ILs, which inhibits the use of reserves in the RO; (2) using energy from MLs to support IL growth, thereby reducing RO reserve consumption, and (3) reducing the demand for P by investing less in the development of photosynthetic machinery. Furthermore, under low light, MLs serve as a sink and rely on other organs for support, directly or indirectly exacerbating the reserves lost in the RO.

14.
Front Plant Sci ; 14: 1166420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313257

RESUMO

Coptis plants (Ranunculaceae) contain high levels of isoquinoline alkaloids and have a long history of medicinal use. Coptis species are of great value in pharmaceutical industries and scientific research. Mitochondria are considered as one of the central units for receiving stress signals and arranging immediate responses. Comprehensive characterizations of plant mitogenomes are imperative for revealing the relationship between mitochondria, elucidating biological functions of mitochondria and understanding the environmental adaptation mechanisms of plants. Here, the mitochondrial genomes of C. chinensis, C. deltoidea and C. omeiensis were assembled through the Nanopore and Illumina sequencing platform for the first time. The genome organization, gene number, RNA editing sites, repeat sequences, gene migration from chloroplast to mitochondria were compared. The mitogenomes of C. chinensis, C. deltoidea and C. omeiensis have six, two, two circular-mapping molecules with the total length of 1,425,403 bp, 1,520,338 bp and 1,152,812 bp, respectively. The complete mitogenomes harbors 68-86 predicted functional genes including 39-51 PCGs, 26-35 tRNAs and 2-5 rRNAs. C. deltoidea mitogenome host the most abundant repeat sequences, while C. chinensis mitogenome has the largest number of transferred fragments from its chloroplasts. The large repeat sequences and foreign sequences in the mitochondrial genomes of Coptis species were related to substantial rearrangements, changes in relative position of genes and multiple copy genes. Further comparative analysis illustrated that the PCGs under selected pressure in mitochondrial genomes of the three Coptis species mainly belong to the mitochondrial complex I (NADH dehydrogenase). Heat stress adversely affected the mitochondrial complex I and V, antioxidant enzyme system, ROS accumulation and ATP production of the three Coptis species. The activation of antioxidant enzymes, increase of T-AOC and maintenance of low ROS accumulation in C. chinensis under heat stress were suggested as the factors for its thermal acclimation and normal growth at lower altitudes. This study provides comprehensive information on the Coptis mitogenomes and is of great importance to elucidate the mitochondrial functions, understand the different thermal acclimation mechanisms of Coptis plants, and breed heat-tolerant varieties.

15.
Comput Intell Neurosci ; 2022: 7584853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156975

RESUMO

Green smart building is the development direction of future architecture. It is of great significance to carry out risk assessment. Fire risk is the key content of building risk, so this paper takes fire risk as the research object, with the help of artificial intelligence technology, to carry out the risk assessment research of green smart buildings. With the rapid development of the economy, urban fire risk factors are increasing, and the fire situation is becoming more and more serious. Building fire risk assessment is an important measure to effectively prevent and control urban building fires. This paper uses Internet of Things data to carry out fire risk assessment and realize Internet of Things data mining. Collect a large number of expert samples to build training samples, train the green intelligent building monomer fire risk assessment and prediction model based on deep neural network, constantly adjust the model parameters to optimize the model, and finally verify and modify the model.


Assuntos
Inteligência Artificial , Incêndios , Incêndios/prevenção & controle , Redes Neurais de Computação , Medição de Risco , Tecnologia
16.
Front Genet ; 13: 831611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432456

RESUMO

Modern research has proved that the main medicinal component of Rhodiola crenulata, which has a wide range of medicinal value, is its secondary metabolite salidroside. The MYB transcription factor family is widely involved in biosynthesis of second metabolism and other roles in the stress response in plants, so a genome-wide identification and analysis for this family in R. crenulata is worth conducting. In this research, genome-wide analysis identified 139 MYB genes based on conserved domains in the R. crenulata genome, and 137 genes were used to construct a phylogenetic tree and modified with expression files to reveal evolutionary characteristics. Physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze RcMYBs. Additionally, cis-acting elements related to transcription, hormone, and MYB binding were found in the promoter region of the selected RcMYBs. Four RcMYBs were cloned, sequenced, and their gene expression pattern was analyzed for further analysis of their functions. The research results lay the foundation for further research on the function of RcMYB and R. crenulata.

17.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591997

RESUMO

The medicinal use of traditional Chinese medicine is mainly due to its secondary metabolites. Visualization of the distribution of these metabolites has become a crucial topic in plant science. Mass spectrometry imaging can extract huge volumes of data and provide spatial distribution information about these by analyzing tissue slices. With the advantage of high throughput and higher accuracy, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is often used in biological research and in the study of traditional Chinese medicine. However, the procedures used in this research are complicated and not affordable. In this study, we optimized sectioning and DESI imaging procedures and developed a more cost-effective method to identify the distribution of metabolites and categorize these compounds in plant tissues, with a special focus on traditional Chinese medicines. The study will promote the utilization of DESI in metabolite analysis and standardization of traditional Chinese medicine/ethnic medicine for research-related technologies.


Assuntos
Medicina Tradicional Chinesa , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Metaboloma
18.
Front Pharmacol ; 13: 842890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359875

RESUMO

Fuzi is a famous toxic traditional herbal medicine, which has long been used for the treatment of various diseases in China and many other Asian countries because of its extraordinary pharmacological activities and high toxicity. Different processing methods to attenuate the toxicity of Fuzi are important for its safe clinical use. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a metabolomics-combined multivariate statistical analysis approach was applied to investigate a series of Aconitum alkaloids and explore potential metabolic markers to understand the differences between raw and processed Fuzi with different steaming time points. Moreover, the selected metabolic markers were visualized by DESI-MSI, and six index alkaloids' contents were determined through HPLC. The results indicated visible differences among raw and processed Fuzi with different steaming times, and 4.0 h is the proper time for toxicity attenuation and efficacy reservation. A total of 42 metabolic markers were identified to discriminate raw Fuzi and those steamed for 4.0 and 8.0 h, which were clearly visualized in DESI-MSI. The transformation from diester-diterpenoid alkaloids to monoester-diterpenoid alkaloids and then to non-esterified diterpene alkaloids through hydrolysis is the major toxicity attenuation process during steaming. DESI-MSI combined with metabolomics provides an efficient method to visualize the changeable rules and screen the metabolic markers of Aconitum alkaloids during steaming. The wide application of this technique could help identify markers and reveal the possible chemical transition mechanism in the "Paozhi" processes of Fuzi. It also provides an efficient and easy way to quality control and ensures the safety of Fuzi and other toxic traditional Chinese medicine.

19.
Acta Pharm Sin B ; 12(11): 4075-4097, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386468

RESUMO

Pharmaceutical analysis is a discipline based on chemical, physical, biological, and information technologies. At present, biotechnological analysis is a short branch in pharmaceutical analysis; however, bioanalysis is the basis and an important part of medicine. Biotechnological approaches can provide information on biological activity and even clinical efficacy and safety, which are important characteristics of drug quality. Because of their advantages in reflecting the overall biological effects or functions of drugs and providing visual and intuitive results, some biotechnological analysis methods have been gradually applied to pharmaceutical analysis from raw material to manufacturing and final product analysis, including DNA super-barcoding, DNA-based rapid detection, multiplex ligation-dependent probe amplification, hyperspectral imaging combined with artificial intelligence, 3D biologically printed organoids, omics-based artificial intelligence, microfluidic chips, organ-on-a-chip, signal transduction pathway-related reporter gene assays, and the zebrafish thrombosis model. The applications of these emerging biotechniques in pharmaceutical analysis have been discussed in this review.

20.
J Virol Methods ; 298: 114292, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536486

RESUMO

Poliovirus 1 (PV 1) is the standard virus used in tests to support claims of virucidal property in commercial hand sanitizers and disinfectants in China. Classified within the same genus as poliovirus, enterovirus A71 (EV A71), which causes hand-foot-mouth disease among children, has caused numerous outbreaks in China and other countries. Hand hygiene and surface cleaning are critical to prevent and control this disease and many other infectious diseases. This study compared the efficacies of 17 self-made alcohol-based hand sanitizers and 10 commercially available disinfectants (4 high-level, 4 intermediate-level, 2 low-level) against these two viruses. The results showed that by itself, ethanol needed to reach a concentration of 75 % to meet the inactivation requirement of 4-log reduction in average TCID50 against PV 1. Nine out of 13 laboratory-formulated alcohol-based hand sanitizers reached the 4-log inactivation requirement against PV 1 after 4.5 min, while the remaining four sanitizers did not. Unexpectedly, none of the tested ethanol-based sanitizers inactivated EV A71 by 4-log. For the commercially available disinfectants, all four high-level and one intermediate-level disinfectants passed the inactivation requirements against both PV 1 and EV A71, while two intermediate-level disinfectants met the inactivation requirement against PV 1 but failed against EV A71. The last intermediate-level and both low-level disinfectants did not meet the requirement for either PV 1 or EV A71. Therefore, PV 1 is more susceptible to inactivation by many common alcohol-based and non-alcohol-based disinfectants than EV A71. Therefore, the adoption of EV A71 as the standard test virus would elevate the disinfectant requirement standard and provide better protection for the public. Based on these results, seven new alcohol-based hand sanitizer recipes were formulated and found to be effective against both PV 1 and EV A71, with two candidates reaching the required 4-log virus reduction efficacy within 1 min.


Assuntos
Desinfetantes , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Poliovirus , Criança , Desinfetantes/farmacologia , Infecções por Enterovirus/prevenção & controle , Etanol/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA