Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(11): 318, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743438

RESUMO

The present study evaluates the antibacterial properties of alkaloids and the crude extracts (ethanol, n-hexane and ethyl acetate) from seaweed Sargassum fusiforme against coral pathogens (Photobacterium galatheae, Vibrio harveyi, Bordetella trematum, and Ochrobactrum pseudogrignonese) isolated from coral Porites lutea. To our knowledge, this is the first in vitro assay for such extracts on Porites lutea coral pathogens. Bacterial pathogens have been identified using 16S RNA and BankIt into gene bank and given the accession numbers (OR401000; OR401001; OR401336, and OR400998 respectively). GC-Mass profiling conducted for n-hexane compounds confirmed the presence of thirty-eight molecules, twelve of which have been previously reported for their bioactivity. The results revealed that alkaloids and n-hexane extract demonstrated eminent antibacterial activity compared to the other extracts against the tested coral pathogenic bacteria. Molecular docking was conducted to evaluate the twelve previously mentioned bioactive molecules to get a full understanding of the interaction of those bioactive molecules on vital bacterial proteins (Hemolysin protein (PDB ID: 1XEZ) and Cytoplasmic proteins (PDB ID: 3TZC)). Docked twelve molecules against hemolysin protein (PDB ID: 1XEZ) came exactly in line with the docked result of the same molecules with cytoplasmic proteins (PDB ID: 3TZC), proving the bioactivity of 6-O-Palmitoyl-L-ascorbic acid, 3TMS derivative; Glycerol monostearate, 2TMS derivative and Eicosanoic acid complexes in antibacterial activity action and score higher than reference ligand. Those three compounds will be investigated separately in future in vitro assay soon. Our conclusions align with the study's antibacterial in vitro assay results. The present study reports the novelty of different extracts of S. fusiforme as an antibacterial agent against coral pathogenic bacteria that trigger diseases in Porites lutea.


Assuntos
Antozoários , Proteínas Hemolisinas , Animais , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia
2.
BMC Genomics ; 23(1): 392, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606721

RESUMO

BACKGROUND: Transcriptome sequencing is an effective tool to reveal the essential genes and pathways underlying countless biotic and abiotic stress adaptation mechanisms. Although severely challenged by diverse environmental conditions, the Pacific abalone Haliotis discus hannai remains a high-value aquaculture mollusk and a Chinese predominantly cultured abalone species. Salinity is one of such environmental factors whose fluctuation could significantly affect the abalone's cellular and molecular immune responses and result in high mortality and reduced growth rate during prolonged exposure. Meanwhile, hybrids have shown superiority in tolerating diverse environmental stresses over their purebred counterparts and have gained admiration in the Chinese abalone aquaculture industry. The objective of this study was to investigate the molecular and cellular mechanisms of low salinity adaptation in abalone. Therefore, this study used transcriptome analysis of the gill tissues and flow cytometric analysis of hemolymph of H. discus hannai (DD) and interspecific hybrid H. discus hannai ♀ x H. fulgens ♂ (DF) during low salinity exposure. Also, the survival and growth rate of the species under various salinities were assessed. RESULTS: The transcriptome data revealed that the differentially expressed genes (DEGs) were significantly enriched on the fluid shear stress and atherosclerosis (FSS) pathway. Meanwhile, the expression profiles of some essential genes involved in this pathway suggest that abalone significantly up-regulated calmodulin-4 (CaM-4) and heat-shock protein90 (HSP90), and significantly down-regulated tumor necrosis factor (TNF), bone morphogenetic protein-4 (BMP-4), and nuclear factor kappa B (NF-kB). Also, the hybrid DF showed significantly higher and sustained expression of CaM and HSP90, significantly higher phagocytosis, significantly lower hemocyte mortality, and significantly higher survival at low salinity, suggesting a more active molecular and hemocyte-mediated immune response and a more efficient capacity to tolerate low salinity than DD. CONCLUSIONS: Our study argues that the abalone CaM gene might be necessary to maintain ion equilibrium while HSP90 can offset the adverse changes caused by low salinity, thereby preventing damage to gill epithelial cells (ECs). The data reveal a potential molecular mechanism by which abalone responds to low salinity and confirms that hybridization could be a method for breeding more stress-resilient aquatic species.


Assuntos
Aterosclerose , Gastrópodes , Animais , Gastrópodes/genética , Perfilação da Expressão Gênica , Salinidade , Estresse Salino/genética , Transcriptoma
3.
Soft Matter ; 16(9): 2199-2207, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31970373

RESUMO

Hydrogels as typical hydrophilic materials are promising candidates for designing novel functional materials for anti-fouling, oil/water separation, wearable devices, tissue scaffolds, etc. However, it still remains a challenge to design stable and tough hydrogels for applications in complex environments of high stress, temperature, salt, and pH. Herein, we fabricate a novel seawater-enhanced Agar/Poly(N-isopropylacrylamide)/clay hydrogel (APNC gel) through a facile photo-initiated polymerization process. The APNC gel consists of fully interpenetrating double networks with negatively-charged clay serving as physical cross-linkers. The resulting gel exhibits tough mechanical strength (tensile strength of 0.85 MPa and compression strength of 1.68 MPa) and excellent stabilities for high temperature (100 °C) and high salt levels (20 wt% NaCl). Especially, the strength of the APNC gel is greatly enhanced (up to 5.04 MPa) by seawater, which contains numerous inorganic ions (Mg2+, Na+, K+, etc.). Meanwhile, the APNC gel presents excellent anti-adhesion performance due to the negatively-charged clay. Thus, a hydrogel-coated mesh with underwater superoleophobicity has been designed for oil/seawater separation. The resulting mesh can selectively remove oil from seawater with high separation efficiency (up to 99%). These characteristics demonstrate that the tough APNC gel will be an ideal material candidate for developing functional materials applied in a complex environment.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(4): 529-539, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400526

RESUMO

In this paper, we discuss, both analytically and numerically, the paraxial propagation of the radially polarized Laguerre-Gaussian-correlated Schell-model (LGCSM) beams orthogonal to the optical axis in uniaxial crystals. The analytical expression for the cross-spectral density function and the second-order moments of the radially polarized LGCSM beams are derived, and the evolution properties of the normalized intensity distribution, the spectral degree of the coherence (SDOC), and the spectral degree of the polarization (SDOP) in uniaxial crystals are elucidated by numerical examples. It is found that the intensity distribution of the radially polarized LGCSM beams evolves from a doughnut shape into a solid shape and finally converts into an elliptical symmetric hollow-ring profile in uniaxial crystals due to the combined effect of special correlation functions and the anisotropy effect of the uniaxial crystals. The evolution of the SDOC and SDOP for the radially polarized LGCSM beams is quite different from that of the radially polarized Gaussian-Schell-model beams. In addition, the propagation properties of the radially polarized LGCSM beams are closely related to the spatial coherence length, the mode order, and the ratio of extraordinary and ordinary reflective indices. The results show that the uniaxial crystals could modulate the evolution properties of the radially polarized LGCSM beams.

5.
J Opt Soc Am A Opt Image Sci Vis ; 36(11): 1838-1845, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873688

RESUMO

Based on the extended Huygens-Fresnel principle, the analytical expressions for the intensity distribution, effective radius of curvature, beam wander, Strehl ratio, and the power in the bucket of a partially coherent crescent-like (PCCL) beam under the maritime environment are derived. The propagation properties of the PCCL beams through the maritime environment are investigated in detail. Numerical results indicate that, for the maritime environment, the propagation properties and beam quality of a PCCL beam are closely related to its initial beam parameters and the turbulence parameters. Comparative analyses are performed for the new models under the marine turbulence and the terrestrial turbulence. It turns out that the marine turbulence influences the beam width and the beam wander more than the terrestrial turbulence does. Also, the beam quality of the PCCL beams in marine turbulence can be improved by choosing a large beam width, high coherence length, or short wavelength. The PCCL beams have a range-dependent tilt, which can be useful for some practical applications, such as traveling around an obstacle. The results are of significance for over-the-sea communication systems.

6.
Crit Rev Biotechnol ; 38(3): 351-368, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28764567

RESUMO

Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.


Assuntos
Biocombustíveis , Meio Ambiente , Microalgas/metabolismo , Biotecnologia , Células Imobilizadas/metabolismo , Microalgas/citologia , Microalgas/crescimento & desenvolvimento , Águas Residuárias
7.
Molecules ; 22(7)2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737731

RESUMO

The chemical profile of Myrica rubra (a native species in China) leaf extract was investigated by UPLC-PDA-HRMS, and the neuroprotective activity of two characteristic constituents, myricanol and myricetrin, was evaluated with N2a cells using H2O2-inducedoxidative challenge through a series of methods, e.g., MTT assay, ROS assay and [Ca2+]i assay. Among the 188 constituents detected in the extract of Myrica rubra leaf, 116 were identified definitely or tentatively by the comprehensive utilization of precise molecular weight and abundant multistage fragmentation information obtained by quadrupole orbitrap mass spectrometry. In addition, 14 potential new compounds were reported for the first time. This work established an example for the research of microconstituents in a complex analyte and revealed that suppression of H2O2-induced cytotoxicity in N2a cells was achieved by the pretreatment with myricanol. The evidence suggested myricanol may potentially serve as a remedy for prevention and therapy of neurodegenerative diseases induced by oxidative stress.


Assuntos
Myrica/química , Extratos Vegetais/química , Folhas de Planta/química , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Casca de Planta/química
8.
Polymers (Basel) ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611205

RESUMO

Because of its unique molecular structure and renewable properties, vegetable oil has gradually become the focus of researchers. In this work, castor oil was first transformed into a castor oil-based triacrylate structure (MACOG) using two steps of chemical modification, then it was prepared into castor oil-based waterborne polyurethane acrylate emulsion, and finally, a series of coating materials were prepared under UV curing. The results showed that with the increase in MACOG content, the glass transition temperature of the sample was increased from 20.3 °C to 46.6 °C, and the water contact angle of its surface was increased from 73.85 °C to 90.57 °C. In addition, the thermal decomposition temperature, mechanical strength, and water resistance of the samples were also greatly improved. This study not only provides a new idea for the preparation of waterborne polyurethane coatings with excellent comprehensive properties but also expands the application of biomass material castor oil in the field of coating.

9.
Environ Microbiol Rep ; 15(1): 13-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054576

RESUMO

Coral-bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High-throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site-wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self-sustaining tool in coral restoration.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Antozoários/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Proteobactérias/genética , China , Água
10.
Sci Rep ; 13(1): 3456, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859411

RESUMO

Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.


Assuntos
Cimentos Ósseos , Microbiota , China , Recifes de Corais , Cimentos de Ionômeros de Vidro
11.
J Food Sci ; 88(7): 3075-3089, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282793

RESUMO

Bioactive packaging can improve the shelf-life of food products and enhance consumer health. It can also alleviate environmental stress on the planet by reducing food waste. Here, the electrospinning of tea tree oil-loaded 2-hydroxypropyltrimethyl ammonium chloride chitosan nanofibers was investigated. The fabricated nanofiber films were characterized by scanning electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and contact angle meter analysis. The prepared nanofibers have a well-defined diameter of about 200 nm and a smooth shape. They have good antibacterial properties against Staphylococcus aureus and Escherichia coli in vitro. Tea tree oil-loaded chitosan-based nanofibers were found to be effective in delaying spoilage and extending the shelf life of salmon by sensory evaluation, texture analysis, color, total viable counts, thiobarbituric acid, and total volatile basic nitrogen during storage in the freshness experiments, thus indicating their health benefits in bioactive packaging.


Assuntos
Quitosana , Nanofibras , Eliminação de Resíduos , Óleo de Melaleuca , Animais , Óleo de Melaleuca/farmacologia , Nanofibras/química , Quitosana/farmacologia , Quitosana/química , Salmão , Antibacterianos/farmacologia , Antibacterianos/química , Alimentos Marinhos , Expectativa de Vida
12.
Sci Total Environ ; 879: 163038, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37003322

RESUMO

Mitigation and rehabilitation are responses to climate change and human misuse. However, many regions worldwide still lose coral reefs even after implementing these responses. We chose Hurghada city, on the Red Sea, and Weizhou island, on the South China Sea, as sample regions to assess their various modes of coral community structure loss against the combined climatic and human impact drivers that led to this shift. Despite the former being considered a regional coral refuge, while the latter was limited, both regions have previously intervened with coral restoration. We found that even after three decades of impact cessation by forcing laws, most coral reef states are still declining (about a third and a half in both cities), have not harnessed the existing crowded larval density, and are unrecovered. Such findings imply that the combined impacts will persist, necessitating a broad connectivity analysis that enables a suitable intervention (hybrid solutions hypothesis). Each state of coral categories was connected to certain combined stressor factors using our broad connectivity analysis to grasp the extent and relative contribution of coral community shift since our data obtained from comparable sites were widely varied. Moreover, destructive emerged changes have transformed the coral community structure under the forced adaptation scenario of the community structure, boosting those who can resist at the expense of others. To prove our hypothesis, we used the connectivity findings in determining the optimal technique and spots for coral rehabilitation around the two cities. We then compared our findings with the outcomes of two other existing adjacent restoration projects related to other endeavors. Our hybrid approach harvested coral larvae that had been wasted in both cities. Thus, hybrid solutions are globally required for such cases, and proper early interventions are needed to maintain the genotype power to boost coral adaptability throw global ecological settings.


Assuntos
Antozoários , Recifes de Corais , Animais , Humanos , Ecossistema , Larva , Mudança Climática
13.
Microbiol Res ; 251: 126841, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385083

RESUMO

Fusarium equiseti is a pathogenic fungus of plant root rot, and there are few studies on the biocontrol strains of plant wilt caused by F. equiseti. Hence, we conducted a screening and antimicrobial characterization study of marine-origin biocontrol fungi from water samples of the Yap Trench. A new Talaromyces strain DYM25 was screened from water samples of the Yap Trench in the western Pacific Ocean, and its potential as a biocontrol agent against Fusarium wilt of cucumber was studied. 18S rRNA and ITS gene sequencing verified that strain DYM25 belongs to the genus Talaromyces. The growth of F. equiseti was inhibited by strain DYM25 through the antibiosis effect. A preliminary test was first conducted to examine the bioactive stability of filtered DYM25 broth against F. equiseti under various conditions, including high temperature, UV light, alkaline environment, and the presence of metal ions, which indicated its potential as a bio-control agent. The results of the pot experiment showed that F. equiseti caused cucumber wilt, which could be mitigated using the fermentation broth of strain DYM25 (52.9 %). On the other hand, the alkaloid chromogenic reaction showed that the alkaloid salts present in the crude n-butanol extracts were most likely the major components that might have an antimicrobial effect. Therefore, Talaromyces sp. DYM25 represents a new species that can be used as a novel biocontrol agent against cucumber wilt.


Assuntos
Cucumis sativus , Fusarium , Interações Microbianas , Talaromyces , Alcaloides , Organismos Aquáticos/fisiologia , Cucumis sativus/microbiologia , Fusarium/fisiologia , Interações Microbianas/fisiologia , Controle Biológico de Vetores , Talaromyces/classificação , Talaromyces/isolamento & purificação , Água
14.
J Colloid Interface Sci ; 602: 394-405, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139537

RESUMO

This paper reports a fresh and robust strategy to develop polyurethane/polysiloxane pressure-sensitive adhesives (PSAs) with excellent properties by replacing part of C5 petroleum resin with modified lignin. A unique aspect of this work is the use of renewable lignin to obtain modified monomers. The phenolic hydroxyl group of lignin is increased by 21.4% after demethylation, which will help to introduce 6-bromo-1-hexene into the lignin structure through Williamson method. The L3 lignin and C5 petroleum resin are mixed with polyurethane/polysiloxane prepolymer, and furthermore a series of PSAs are obtained under ultraviolet light. It turns out that L3 lignin can not only replace part of C5 petroleum resin, but also obtain attractive and controllable features. Especially when the mass ratio of C5 petroleum resin to L3 lignin is 6:4, compared with pure C5 petroleum resin, the 180° peel strength and the shear strength of PU46 are increased by 24.1% and 91.5% respectively. Additionally, the shear strength on the wood substrate is increased by 320.6%. This study provides an effective method for the preparation of high value-added lignin PSA, and expands the application fields of PSA.


Assuntos
Lignina , Petróleo , Adesivos , Poliuretanos , Siloxanas , Madeira
15.
Trends Plant Sci ; 25(11): 1067-1070, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32855062

RESUMO

Oceans harbor a large diversity of biocommunities that are promising yet undervalued for playing a role in carbon capture and storage (CCS). To counter the increasing global climate change, exploring new oceanic opportunities by the incorporation of new blue carbon (BC) plants for CCS may help in achieving sustainable ecosystems on which human society depends.


Assuntos
Carbono , Ecossistema , Dióxido de Carbono , Mudança Climática , Plantas
16.
RSC Adv ; 10(55): 33196-33204, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515026

RESUMO

Chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) at various concentrations were used for the preparation of COS-EGCG conjugates. The highest total phenolic content (TPC), representing the amount of EGCG conjugated, was obtained for 1 wt% COS together with EGCG at 0.5 wt% (C1-E0.5-conjugate) or 1.0 wt% (C1-E1.0-conjugate) (66.83 and 69.22 mg EGCG per g sample, respectively) (p < 0.05). The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities (DRSA and ARSA, respectively) and ferric reducing antioxidant power (FRAP) of all the samples showed similar trends with TPC. The C1-E0.5-conjugate had higher DRSA, ARSA, FRAP and oxygen radical absorbance capacity (ORAC) values than COS (p < 0.05). Similarly, the antimicrobial activity of COS increased when conjugated with EGCG (p < 0.05). FTIR, 1H-NMR and 13C-NMR analyses confirmed the successful grafting of EGCG with COS. Therefore, 1 wt% COS and 0.5 wt% EGCG were used for the production of a conjugate with augmented antioxidant activity, which could be used to retard lipid oxidation of fatty foods.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33419234

RESUMO

Pseudomonas aeruginosa in water lines may cause bacteria pollution indrinking fountains that could affect the quality of potable water, thus posing a risk to public health. A clean and efficient strategy is required for drinking water treatment for food safety. In this study, an AiiA-homologous lactonase was cloned from a deep-sea probiotics Bacillus velezensis (DH82 strain), and was heterologously expressed so that the capacity of the enzyme on the N-acyl-L-homoserine lactone (AHL)-degrading, effect of bacterial proliferation, biofilm formation and toxic factors release, and membrane pollution from P. aeruginosa could each be investigated to analyze the effect of the enzyme on water treatment. The enzyme effectively degraded the signal molecules of P. aeruginosa (C6-HSL and C12-HSL), inhibited early proliferation and biofilm formation, significantly reduced toxic products (pyocyanin and rhamnolipid), and inhibited bacterial fouling on the filter membrane, which prevented the secondary contamination of P. aeruginosa in drinking water. The findings demonstrated that the quorum quenching enzyme from probiotics could prevent bacteria pollution and improve potable water quality, and that the enzyme treatment could be used as a probable strategy for drinking water treatment.


Assuntos
Água Potável , Percepção de Quorum , Purificação da Água , Bacillus , Bactérias , Pseudomonas aeruginosa
18.
Int J Biol Macromol ; 130: 705-714, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30849466

RESUMO

Firefly luciferase is a prominent reporter on molecular imaging with the advantage of longer wavelength on light emission and the ATP linear correlation, which makes it useful in most of current bioluminescence imaging model. However, the utility of this biomaterial was limited by the signal intensity and stability which are respectively affected by enzyme activity and substrate consumption. This study demonstrated a series of novel synthetic bifunctional enzyme complex of Firefly luciferase (Fluc) and Luciferin-regenerating enzyme (LRE). A peptide linker library was constructed for the fusion strategy on biosynthesis. The findings of both experimental data and structural simulation demonstrated that the intervention of fused LRE remarkably improve the stability of in vitro bioluminescence signal through luciferin recycling; and revealed the competitive relationship of Fluc and LRE on luciferin binding: Fluc performed higher activity with one copy number of rigid linker (EAAAK) at the C terminal while LRE acted more efficiently with two copy numbers of flexible linker (GGGGS) at the N terminal. With the advantage of signal intensity and stability, this fused bifunctional enzyme complex may expand the application of firefly luciferase to in vitro bioluminescence imaging.


Assuntos
Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/química , Luminescência , Medições Luminescentes , Ativação Enzimática , Expressão Gênica , Cinética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/isolamento & purificação , Medições Luminescentes/métodos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade
20.
J Photochem Photobiol B ; 185: 66-72, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29870960

RESUMO

Firefly luciferase (Fluc) has been widely used as a bioluminescent monitor. The ATP linear correlation and exogenous luciferin requirement make it useful in most of current imaging systems. However, the utility of this reporter was still limited by the intensity and decay of the luminescent signal, and the active site and structure of enzyme including the relevant substrate channeling region. This study demonstrated a novel construction of bifunctional enzyme system to improve the luminescence generation of firefly luciferase, by bringing in a luciferin-regenerating enzyme (LRE) fusion expressed to the C terminal of luciferase, between which were connected with peptide linker. The fusion protein constructed with typical type of linker, rigid linker (EAAAK) and flexible linker (GGGGS), were analyzed comparing with the unlinked free enzyme. In vivo and in vitro assessment of the bioluminescence intensity and decaying rate to the series of Fluc-LRE enzyme complex were assayed. The fInding demonstrated that the presence of LRE remarkably enhance the generation of luminescence and remained significant stronger signal than that of the control, and the peptide-linked dual enzyme present more stability and continuation on the signal generation and lower decaying rate on signal recession, especially at low dose of Fluc injection. With the advantage of luminescence intensity and reaction period, the peptide mediated fusion expressed LRE may expand the application of Firefly luciferase on bioluminescence imaging.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Luciferases de Vaga-Lume/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/metabolismo , Escherichia coli/metabolismo , Luciferina de Vaga-Lumes/química , Cinética , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA