RESUMO
The effectiveness of pulsed thermography (PT) for detecting delamination in carbon fiber-reinforced polymer (CFRP) plates has been widely verified. However, delaminations are usually characterized by weak visibility due to the influences of inspection factors and the delaminations with weak visibility are easily missed in real inspections. In this study, by introducing a deep learning algorithm-stacked autoencoder (SAE)-to PT, we propose a novel approach (SAE-PT) to enhance the visibility of delaminations. Based on the ability of SAE to learn unsupervised features from data, the thermal features of delaminations are extracted from the raw thermograms. The extracted features are then employed to construct SAE images, in which the visibility of delaminations is expected to be enhanced. To test the performance of SAE-PT, we inspected CFRP plates with prefabricated delaminations. By implementing SAE-PT on the raw inspection data, the delaminations were more clearly indicated in the constructed SAE images. We also compare SAE-PT to the widely used principal component thermography (PCT) method to further verify the validity of the proposed approach. The results reveal that compared to PCT, SAE-PT can show delaminations in CFRP with higher contrast. By effectively enhancing the delamination visibility, SAE-PT thus has potential for improving the inspection accuracy of PT for non-destructive testing (NDT) of CFRP.
RESUMO
Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner.
RESUMO
Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.