Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Immunol ; 23(7): 1109-1120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761081

RESUMO

Nonimmune cells can have immunomodulatory roles that contribute to healthy development. However, the molecular and cellular mechanisms underlying the immunomodulatory functions of erythroid cells during human ontogenesis remain elusive. Here, integrated, single-cell transcriptomic studies of erythroid cells from the human yolk sac, fetal liver, preterm umbilical cord blood (UCB), term UCB and adult bone marrow (BM) identified classical and immune subsets of erythroid precursors with divergent differentiation trajectories. Immune-erythroid cells were present from the yolk sac to the adult BM throughout human ontogenesis but failed to be generated in vitro from human embryonic stem cells. Compared with classical-erythroid precursors, these immune-erythroid cells possessed dual erythroid and immune regulatory networks, showed immunomodulatory functions and interacted more frequently with various innate and adaptive immune cells. Our findings provide important insights into the nature of immune-erythroid cells and their roles during development and diseases.


Assuntos
Células Precursoras Eritroides , Transcriptoma , Adulto , Diferenciação Celular/genética , Células Eritroides , Sangue Fetal , Humanos , Recém-Nascido , Saco Vitelino
2.
Cell Tissue Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953986

RESUMO

Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.

3.
Biotechnol Bioeng ; 120(3): 819-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412070

RESUMO

Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.


Assuntos
Álcool de Polivinil , Engenharia Tecidual , Animais , Suínos , Engenharia Tecidual/métodos , Álcool de Polivinil/química , Carboximetilcelulose Sódica , Hidrogéis/química , Alginatos/química , Metacrilatos/química
4.
EMBO Rep ; 22(1): e50535, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33319461

RESUMO

Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.


Assuntos
Linhagem da Célula , Células-Tronco Pluripotentes , Fatores de Processamento de Serina-Arginina/genética , Diferenciação Celular , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Proteínas de Membrana , Proteínas do Tecido Nervoso
5.
Immunology ; 163(1): 74-85, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421118

RESUMO

Dendritic cells (DCs) play an important role in linking innate and adaptive immunity. DCs can sense endogenous and exogenous antigens and present those antigens to T cells to induce an immune response or immune tolerance. During activation, alternative splicing (AS) in DCs is dramatically changed to induce cytokine secretion and upregulation of surface marker expression. PTBP1, an RNA-binding protein, is essential in alternative splicing, but the function of PTBP1 in DCs is unknown. Here, we found that a specific deficiency of Ptbp1 in DCs could increase MHC II expression and perturb T-cell homeostasis without affecting DC development. Functionally, Ptbp1 deletion in DCs could enhance antitumour immunity and asthma exacerbation. Mechanistically, we found that Pkm alternative splicing and a subset of Ifn response genes could be regulated by PTBP1. These findings revealed the function of PTBP1 in DCs and indicated that PTBP1 might be a novel therapeutic target for antitumour treatment.


Assuntos
Asma/enzimologia , Células Dendríticas/enzimologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Pulmão/enzimologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/enzimologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Neoplasias Cutâneas/enzimologia , Linfócitos T/metabolismo , Processamento Alternativo , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Homeostase , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Evasão Tumoral , Microambiente Tumoral
6.
J Surg Res ; 194(2): 667-678, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25575733

RESUMO

BACKGROUND: Atherosclerosis is an inflammatory disease with the most common pathologic process leading to cardiovascular diseases. The aim of this study was to evaluate the effect of artemisinin (ART) on the proliferation, migration, and inflammation induced by tumor necrosis factor-α (TNF-α) of rat vascular smooth muscle cells (VSMCs). MATERIALS AND METHODS: Primary rat VSMCs were pretreated with ART and then co-incubated with TNF-α. Cell proliferation was evaluated by MTT assay. Cell migration was assessed by transwell assay. Reactive oxygen species (ROS) production was measured by flow cytometry after staining with dichloro-dihydro-fluorescein diacetate. Inflammation factors of nitric oxide and prostaglandin E2 (PGE2) were measured by responding assay kits. Expression levels of nuclear factor kappa B (NF-κB) subunit NF-κB p65 and the regulator inhibitor of nuclear factor kappa-B kinase-alpha (IκBα) were tested by Western blot, meanwhile, the activation of NF-κB was observed by immunofluorescence assay. RESULTS: The proliferation, migration, and inflammation of VSMCs induced by TNF-α were significantly inhibited by ART treatment in a dose-dependent manner. Treatment with 100 µM ART for 2 h significantly reduced the expression of proliferating cell nuclear antigen and migration-related proteins matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). On the other hand, the same treatment decreased the inflammation factors production of nitric oxide and PGE2. Fluorescence-activated cell sorting analysis revealed that ART suppressed the ROS production induced by TNF-α. Western blot analysis showed that both inflammation mediators inducible nitric oxide synthase and cyclooxygenase and the NF-κB pathway subunit NF-κB p65 were downregulated by ART. CONCLUSIONS: The results suggest that ART can effectively inhibit the proliferation, migration, and inflammation of VSMCs induced by TNF-α through ROS-mediated NF-κB signal pathway.


Assuntos
Anti-Infecciosos/uso terapêutico , Artemisia , Artemisininas/uso terapêutico , Aterosclerose/prevenção & controle , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Aorta Torácica/citologia , Artemisininas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Inflamação/tratamento farmacológico , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
7.
Ageing Res Rev ; 99: 102398, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955265

RESUMO

BACKGROUND: Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE: To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS: PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS: M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aß generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS: Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38686456

RESUMO

Although a demineralized bone matrix (DBM) is often used as an alternative to an autologous bone graft, its clinical application is still hampered by easy dispersion of DBM particles and insufficient osteoinductivity in the defect site. Herein, we designed a self-healing hydrogel for DBM that can rapidly restore its structural integrity after damage based on amino-rich black phosphorus (BP) nanosheets and aldehyde-functionalized hyaluronic acid (AHA). Given the increased expression of bone morphogenetic protein (BMP) antagonists by DBM stimulation, the osteogenic potency of DBM in the hydrogel carrier was further enhanced by abrogating the BMP antagonism. The BP/AHA hydrogel provided dynamic polymer-nanosheet networks that combine injectability, modability, and physical stability with high DBM loading, where the BP nanosheets served as osteogenic cross-linkers to promote biomineralization and deliver siRNA to suppress undesirable expression of BMP antagonist noggin by DBM. As a result, the BP/AHA hydrogel integrated with DBM and noggin-targeting siRNA synergistically promoted osteogenic differentiation of mesenchymal stem cells by enhancing BMP/Smad signaling. This work demonstrates a promising strategy to improve the efficacy of bone regeneration using bone graft.

9.
Adv Healthc Mater ; 13(10): e2303592, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38275216

RESUMO

Demineralized bone matrix (DBM) has been widely used as an allogeneic alternative to autologous bone graft for bone repair. However, more extensive use of DBM is limited due to its particulate nature after demineralization and rapid particle dispersion following irrigation, resulting in unpredictable osteoinductivity. Here, a new design of injectable hydrogel carriers for DBM that combine self-healing ability and osteogenic properties based on the self-assembly of guanidinylated hyaluronic acid and silica-rich nanoclays is reported. The nanoclays serve as reversible linkages to form a dynamic hydrogel network with the guanidine moieties on the polymer chains. Gelation kinetics and mechanical properties can be controlled by altering nanoclay content in the hydrogel. The resulting hydrogel exerts self-healing ability due to its dynamic crosslinks and well retains its overall performance with high DBM loading. The hydrogel exhibits great cytocompatibility and osteogenic effects mediated by the nanoclays. In vivo delivery of DBM using the nanocomposite hydrogel further demonstrates robust bone regeneration in a mouse calvarial defect model in comparison to DBM delivered with aqueous HA. This work suggests a promising hydrogel platform for many applications including therapeutic delivery and tissue engineering.


Assuntos
Matriz Óssea , Osso e Ossos , Camundongos , Animais , Nanogéis , Hidrogéis/farmacologia , Osteogênese
10.
J Pharm Anal ; 14(3): 308-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618250

RESUMO

Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.

11.
Cancers (Basel) ; 16(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38339301

RESUMO

Hepatocellular carcinoma (HCC), which is the third leading cause of cancer-related mortality in the world, presents a significant medical challenge. Triptolide (TP) has been identified as an effective therapeutic drug for HCC. However, its precise therapeutic mechanism is still unknown. Understanding the mechanism of action of TP against HCC is crucial for its implementation in the field of HCC treatment. We hypothesize that the anti-HCC actions of TP might be related to its modulation of HCC lipid metabolism given the crucial role that lipid metabolism plays in promoting the progression of HCC. In this work, we first demonstrate that, both in vitro and in vivo, TP significantly reduces lipid accumulation in HCC cells. Additionally, we notice that lipoprotein lipase (LPL) expression is markedly upregulated in HCC, and that its levels are positively connected with the disease's progression. It is interesting to note that TP dramatically reduces LPL activity, which in turn prevents HCC growth and reduces lipid accumulation. Additionally, the effect of TP on LPL is a direct correlation. These results definitely demonstrate that TP protects hepatocytes against abnormal accumulation of lipids by transcriptionally suppressing LPL, which reduces the development of HCC. This newly identified pathway provides insight into the process through which TP exerts its anti-HCC actions.

12.
Cell Death Dis ; 14(7): 483, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524688

RESUMO

Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Camundongos , Animais , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Transdução de Sinais/fisiologia , Miócitos Cardíacos/metabolismo , Fenilefrina/metabolismo , Fenilefrina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
J Hazard Mater ; 459: 132306, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597388

RESUMO

Dynamic monitoring of environmental Pb2+ is of utmost importance for food safety and personal well-being. Herein, we report a novel, rapid, and practical fluorescence detection platform for Pb2+. The platform comprises two essential components: an engineered DNAzyme probe (EDP) and a responsive functionalized probe (RFP). The EDP demonstrates specific recognition of Pb2+ and the subsequent release of free DNA fragments. The released DNA fragments are then captured using the RFP to form DNA complexes, which undergo multiple cascade amplification reactions involving polymerases and nickases, resulting in the generation of a large number of fluorescence signals. These signals can detect Pb2+ at concentrations as low as 0.114 nmol/L, with a dynamic range spanning from 0.1 nmol/L to 50 nmol/L. Moreover, the platform exhibits excellent sensitivity and selectivity for Pb2+ detection. To further validate its effectiveness, we successfully quantitatively detected lead contamination in water from Chaohu Lake, and the results aligned closely with those obtained using inductively coupled plasma-mass spectrometry (ICP-MS). Moreover, this platform is suitable for detecting Pb2+ in seawater, soil, and fish samples. These findings confirm the suitability of the current detection platform for the dynamic assessment of Pb contamination in ecological environments, thereby contributing to environmental and food safety.


Assuntos
DNA Catalítico , Chumbo , Animais , DNA , Poluição Ambiental , Lagos
14.
iScience ; 26(6): 106917, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378343

RESUMO

The role of SET domain containing 7 (SETD7) during human hematopoietic development remains elusive. Here, we found that deletion of SETD7 attenuated the generation of hematopoietic progenitor cells (HPCs) during the induction of hematopoietic differentiation from human embryonic stem cells (hESCs). Further analysis specified that SETD7 was required for lateral plate mesoderm (LPM) specification but dispensable for the generation of endothelial progenitor cells (EPCs) and HPCs. Mechanistically, rather than depending on its histone methyltransferase activity, SETD7 interacted with ß-catenin at lysine residue 180 facilitated its degradation. Diminished SETD7 expression led to the accumulation of ß-catenin and the consequent activation of the Wnt signaling pathway, which altered LPM patterning and facilitated the production of paraxial mesoderm (PM). Taken together, the findings indicate that SETD7 is related to LPM and PM patterning via posttranslational regulation of the Wnt/ß-catenin signaling pathway, providing novel insights into mesoderm specification during hematopoietic differentiation from hESCs.

15.
ACS Appl Mater Interfaces ; 15(3): 3731-3743, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626669

RESUMO

Piezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications. In this study, we aim to determine the correlation between physiochemical properties and the in vitro cell response to the PHB-based composite scaffolds with rGO or PANi. Specifically, we characterized the surface morphology, wetting behavior, electrochemical impedance, and piezoelectric properties of the composites and controls. The addition of rGO and PANi resulted in decreased fiber diameters and hydrophobicity of PHB. The increased surface energy of PHB after doping nanofillers led to a reduced water contact angle (WCA) from 101.84 ± 2.18° (for PHB) to 88.43 ± 0.83° after the addition of 3 wt % PANi, whereas doping 1 wt % rGO decreased the WCA value to 92.56 ± 2.43°. Meanwhile, doping 0.2 wt % rGO into PHB improved the piezoelectric properties compared to the PHB control and other composites. Adding up to 1 wt % rGO or 3 wt % PANi nanofillers in PHB did not affect the adhesion densities of bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The aspect ratios of attached BMSCs on the composite scaffolds increased compared to the PHB control. The study indicated that the PHB-based composites are promising for potential applications such as regenerative medicine, tissue stimulation, and bio-sensing, which should be further studied.


Assuntos
Grafite , Células-Tronco Mesenquimais , Polímeros/farmacologia , Polímeros/química , Grafite/farmacologia , Grafite/química
16.
J Vis Exp ; (182)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499358

RESUMO

Over the past several decades, biodegradable materials have been extensively explored for biomedical applications such as orthopedic, dental, and craniomaxillofacial implants. To screen biodegradable materials for biomedical applications, it is necessary to evaluate these materials in terms of in vitro cell responses, cytocompatibility, and cytotoxicity. International Organization for Standardization (ISO) standards have been widely utilized in the evaluation of biomaterials. However, most ISO standards were originally established to assess the cytotoxicity of nondegradable materials, thus providing limited value for screening biodegradable materials. This article introduces and discusses three different culture methods, namely, direct culture method, direct exposure culture method, and exposure culture method for evaluating the in vitro cytocompatibility of biodegradable implant materials, including biodegradable polymers, ceramics, metals, and their composites, with different cell types. Research has shown that culture methods influence cell responses to biodegradable materials because their dynamic degradation induces spatiotemporal differences at the interface and in the local environment. Specifically, the direct culture method reveals the responses of cells seeded directly on the implants; the direct exposure culture method elucidates the responses of established host cells coming in contact with the implants; and the exposure culture method evaluates the established host cells that are not in direct contact with the implants but are influenced by the changes in the local environment due to implant degradation. This article provides examples of these three culture methods for studying the in vitro cytocompatibility of biodegradable implant materials and their interactions with bone marrow-derived mesenchymal stem cells (BMSCs). It also describes how to harvest, passage, culture, seed, fix, stain, characterize the cells, and analyze postculture media and materials. The in vitro methods described in this article mimic different scenarios of the in vivo environment, broadening the applicability and relevance of in vitro cytocompatibility testing of different biomaterials for various biomedical applications.


Assuntos
Implantes Absorvíveis , Ortopedia , Terapia Comportamental , Materiais Biocompatíveis , Técnicas de Cultura , Materiais Dentários
17.
ACS Appl Mater Interfaces ; 14(9): 11051-11067, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199989

RESUMO

Angiogenic magnetic hydrogels are attractive for tissue engineering applications because their integrated properties can improve angiogenesis while providing magnetic guidance and stimulation for tissue healing. In this study, we synthesized magnetic nanoparticles (MNPs) with curcumin as an angiogenic agent, referred to as CMNPs, via a one-pot coprecipitation method. We dispersed CMNPs in hyaluronic acid (HyA) to create angiogenic magnetic hydrogels. CMNPs showed a slightly reduced average diameter compared to that of MNPs and a curcumin content of 11.91%. CMNPs exhibited a sustained slow release of curcumin when immersed in a revised simulated body fluid (rSBF). Both CMNPs and MNPs showed a dose-dependent cytocompatibility when cultured with bone marrow-derived mesenchymal stem cells (BMSCs) using the direct exposure culture method in vitro. The average BMSC density increased when the concentrations of CMNPs or MNPs increased from 100 to 500 µg/mL, but the cell density decreased when the nanoparticle concentration reached 1000 µg/mL. CMNPs showed a weaker magnetic response than MNPs both in air and in water immediately after synthesis but retained the magnetism better than MNPs when embedded in the HyA hydrogel because of less oxidation. CMNPs were able to respond to magnetic guidance even when the porcine skin or muscle tissues were placed in between the nanoparticles and external magnet. The magnetic hydrogels of HyA_CMNP and HyA_MNP promoted the adhesion of BMSCs in a direct exposure culture. The HyA_CMNP group also showed the highest secretion of the vascular endothelial growth factor with the release of curcumin in vitro. Overall, our magnetic hydrogels integrated the desirable properties of cytocompatibility and angiogenesis with magnetic guidance, thus proving to be promising for improving tissue regeneration.


Assuntos
Curcumina/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Cicatrização/efeitos dos fármacos , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Materiais Biocompatíveis , Células Cultivadas , Curcumina/metabolismo , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Magnetismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos Sprague-Dawley , Suínos , Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Front Genet ; 13: 927018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061178

RESUMO

Objective: This study aimed to identify specific dysregulated genes with potential diagnostic and predictive values for JAK2V617F + myelofibrosis. Methods: Two gene expression datasets of CD34+ hematopoietic stem and progenitor cells (HSPCs) from patients with JAK2V617F + myeloproliferative neoplasm (MPN) [n = 66, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)] and healthy controls (HC) (n = 30) were acquired from the GEO (Gene Expression Omnibus) database. The differentially expressed genes (DEGs) were screened between each JAK2V617F + MPN entity and HC. Subsequently, functional enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Set Enrichment Analysis (GSEA), were conducted to decipher the important biological effects of DEGs. Protein-protein interaction (PPI) networks of the DEGs were constructed to identify hub genes and significant modules. Another two gene expression profiles of patients with JAK2V617F + MPN [n = 23, including PV, ET, secondary myelofibrosis (SMF), and PMF] and HC (n = 6) from GEO were used as external validation datasets to prove the reliability of the identified signatures. Results: KEGG analysis revealed the upregulated genes in three JAK2V617F + MPN entities compared with HC were essentially enriched in inflammatory pathways and immune response signaling pathways, and the number of these pathways enriched in PMF was obviously more than that in PV and ET. Following the PPI analysis, 10 genes primarily related to inflammation and immune response were found upregulated in different JAK2V617F + MPN entities. In addition, Reactome enrichment analysis indicated that interferon signaling pathways were enriched specifically in PMF but not in PV or ET. Furthermore, several interferon (IFN)-stimulated genes were identified to be uniquely upregulated in JAK2V617F + PMF. The external datasets validated the upregulation of four interferon-related genes (OAS1, IFITM3, GBP1, and GBP2) in JAK2V617F + myelofibrosis. The receiver operating characteristic (ROC) curves indicate that the four genes have high area under the ROC curve (AUC) values when distinguishing JAK2V617F + myelofibrosis from PV or ET. Conclusion: Four interferon-stimulated genes (OAS1, IFITM3, GBP1, and GBP2) exclusively upregulated in JAK2V617F + myelofibrosis might have the potential to be the auxiliary molecular diagnostic and predictive indicators of myelofibrosis.

19.
ACS Appl Bio Mater ; 5(6): 2664-2675, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35671525

RESUMO

Transparent yttria-stabilized zirconia (YSZ) ceramics are promising for cranial window applications because of their good mechanical and optical properties as well as biocompatibility. YSZ discs with different yttria concentrations were either processed via current-activated pressure-assisted densification (CAPAD) using commercial nanoparticles or densified via spark plasma sintering (SPS) using pyrolysis-synthesized nanoparticles in-house. This study provided critical results to screen composition, processing, microstructure, and cytocompatibility of transparent YSZ discs for cranial window applications. CAPAD-processed YSZ discs with 6 or 8 mol % yttria (6YSZ and 8YSZ) and SPS-densified YSZ discs with 4 mol % yttria (4YSZ_P) showed 200-350 nm polycrystalline grains containing 20-30 nm crystallite domains. SPS-densified YSZ discs with 8 mol % yttria (8YSZ_P) showed larger polycrystalline grains of 819 ± 155 nm with 29 ± 5 nm crystallite domains. CAPAD-processed YSZ discs with 3 mol % yttria (3YSZ) showed 39 ± 9 nm grains. Bone-marrow-derived stem cells (BMSCs) on the polished YSZ discs showed statistically higher spreading areas than those on the unpolished YSZ discs of the same compositions. Generally, polished 8YSZ, 4YSZ_P, and 8YSZ_P discs and unpolished 8YSZ_R, 4YSZ_PR, and 8YSZ_PR discs had lower average cell adhesion densities than other YSZ discs under direct contact conditions. Under indirect contact conditions, all the YSZ disc groups showed similar average cell adhesion densities to the Cell-only control. The groups of polished 4YSZ_P and 8YSZ_P discs, unpolished 4YSZ_PR and 8YSZ_PR discs, and particle control of 8YSZ_Pnp showed higher Y3+ ion concentrations than other groups. No mineral deposition was detected on the polished YSZ discs after cell culture. Considering multiple factors such as cytocompatibility, cell adhesion density, Y3+ ion release, mineral deposition, and optical transparency collectively, 8YSZ may be the best candidate for the cranial window applications. Further studies are needed to evaluate the long-term transparency and biocompatibility of YSZ discs.


Assuntos
Ítrio , Zircônio , Cerâmica , Ítrio/química , Zircônio/química
20.
Cell Discov ; 8(1): 41, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534476

RESUMO

Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA