Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nano Lett ; 24(5): 1776-1783, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284760

RESUMO

Donor-acceptor (D-A) copolymers doped with n-type dopants are widely sought after for their potential in organic thermoelectric devices. However, the existing structural disorder significantly hampers their charge transport and thermoelectric performance. In this Letter, we propose a mechanism to mitigate this disorder through side chain engineering. Utilizing molecular dynamics simulations, we demonstrate that strong Coulomb interactions between counterions and charged polymer backbones induce a transition in the stacking arrangement of the polymer backbones from a slipped to a vertical configuration. However, the presence of side chain steric hindrance impedes the formation of closely packed and ordered vertical stacking arrangements, resulting in greater distances between adjacent backbones and a higher level of structural disorder in the doped films. Therefore, we propose minimizing side chain steric hindrance to enhance the structural order in doped films. Our findings provide essential insights for advancing high-performance thermoelectric polymers.

2.
Acc Chem Res ; 56(16): 2127-2138, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432731

RESUMO

ConspectusThe controlled doping of organic semiconductors (OSCs) is crucial not only for improving the performance of electronic and optoelectronic devices but also for enabling efficient thermoelectric conversion and spintronic applications. The mechanism of doping for OSCs is fundamentally different from that of their inorganic counterparts. In particular, the interplay between dopants and host materials is complicated considering the low dielectric constant, strong lattice-charge interaction, and flexible nature of materials. Recent experimental breakthroughs in the molecular design of dopants and the precise doping with high spatial resolution call for more profound understandings as to how the dopant interacts with the charge introduced to OSCs and how the admixture of dopants alters the electronic properties of host materials before one can exploit controllable doping to realize desired functionalities.By employing state-of-the-art computational tools, we revealed the effects of doping in representative and emerging organic and coordination polymers aiming toward thermoelectric and spintronic applications. We showed that dopants and hosts should be taken as an integrated system, and the type of charge-transfer interaction between them is the key for spin polarization. First, we found doping-induced modifications to the electronic band in a potassium-doped coordination polymer, an n-type thermoelectric material. The charge localization due to the Coulomb interaction between the completely ionized dopant and the injected charge on the polymer backbone and also the polaron band formation at low doping levels are responsible for the nonmonotonic temperature dependence of the conductivity and Seebeck coefficient observed in recent experiments. The mechanistic insights gained from these results have provided important guidelines on how to control the doping level and working temperature to achieve a high thermoelectric conversion efficiency. Next, we demonstrated that the ionized dopants scatter charge carriers via screened Coulomb interactions, and it may become a dominant scattering mechanism in doped polymers. After incorporating the ionized dopant scattering mechanism in PEDOT:Tos, a p-type thermoelectric polymer, we were able to reproduce the measured Seebeck coefficient-electrical conductivity relationship spanning a wide range of doping levels, highlighting the importance of ionized dopant scattering in charge transport.In the two cases described above, charge injection is enabled by integral charge transfer between the dopant and host polymers. In a third example, we showed that a novel type of stacked two-dimensional polymer, conjugated covalent organic frameworks (COFs) with closed-shell electronic structures, can be spin polarized by iodine doping via fractional charge transfer even at high doping levels. We then manifested that magnetization can be attained in nonmagnetic materials lacking metal d electrons and further designed two new COFs with tunable spintronic structure and magnetic interactions after the iodine doping. These findings have suggested a practical route to enable spin polarization in nonradical materials by chemical doping via orbital hybridization, which holds great promise for flexible spintronic applications.

3.
Small ; 19(24): e2207085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919307

RESUMO

Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.

4.
Biomacromolecules ; 24(9): 4113-4122, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611236

RESUMO

Herein, a dual-functioning deep eutectic solvent system based on triethylmethylammonium chloride and imidazole was harnessed as a swelling agent and a reaction medium for the esterification of cellulose with n-octyl succinic anhydride (OSA). The modified or amphiphilic cellulose nanofibers (ACNFs), synthesized using three different OSA-to-anhydroglucose unit molar ratios (0.5:1, ACNF-1; 1:1, ACNF-2; and 1.5:1, ACNF-3), were further converted into nanofibers with degree of substitution (DS) values of 0.24-0.66. The ACNFs possessed a lateral dimension of 4.24-9.22 nm and displayed surface activity due to the balance of hydrophobic and hydrophilic characteristics. The ACNFs made stable aqueous dispersions; however, the instability index of ACNF-3 (0.51) was higher than those of ACNF-1 (0.29) and ACNF-2 (0.33), which was attributed to the high DS-induced hydrophobicity, causing the instability in water. The amphiphilic nature of ACNFs promoted their performance as stabilizers in oil-in-water Pickering emulsions with average droplet sizes of 4.85 µm (ACNF-1) and 5.48 µm (ACNF-2). Self-standing films of ACNFs showed high contact angles for all the tested DS variants (97.48-114.12°), while their tensile strength was inversely related to DS values (ACNF-1: 115 MPa and ACNF-3: 49.5 MPa). Aqueous dispersions of ACNFs were also tested for coating fruits to increase their shelf life. Coatings improved their shelf life by decreasing oxygen contact and moisture loss.


Assuntos
Celulose , Nanofibras , Nanofibras/química , Nanofibras/ultraestrutura , Emulsões/química , Solventes/química , Celulose/química , Celulose/ultraestrutura , Betula/química , Esterificação
5.
Biomacromolecules ; 24(8): 3835-3845, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527286

RESUMO

In the context of three-dimensional (3D) cell culture and tissue engineering, 3D printing is a powerful tool for customizing in vitro 3D cell culture models that are critical for understanding the cell-matrix and cell-cell interactions. Cellulose nanofibril (CNF) hydrogels are emerging in constructing scaffolds able to imitate tissue in a microenvironment. A direct modification of the methacryloyl (MA) group onto CNF is an appealing approach to synthesize photocross-linkable building blocks in formulating CNF-based bioinks for light-assisted 3D printing; however, it faces the challenge of the low efficiency of heterogenous surface modification. Here, a multistep approach yields CNF methacrylate (CNF-MA) with a decent degree of substitution while maintaining a highly dispersible CNF hydrogel, and CNF-MA is further formulated and copolymerized with monomeric acrylamide (AA) to form a super transparent hydrogel with tuneable mechanical strength (compression modulus, approximately 5-15 kPa). The resulting photocurable hydrogel shows good printability in direct ink writing and good cytocompatibility with HeLa and human dermal fibroblast cell lines. Moreover, the hydrogel reswells in water and expands to all directions to restore its original dimension after being air-dried, with further enhanced mechanical properties, for example, Young's modulus of a 1.1% CNF-MA/1% PAA hydrogel after reswelling in water increases to 10.3 kPa from 5.5 kPa.


Assuntos
Bioimpressão , Nanofibras , Humanos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Celulose/farmacologia , Engenharia Tecidual , Impressão Tridimensional , Células HeLa , Alicerces Teciduais
6.
Biomacromolecules ; 24(8): 3819-3834, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37437256

RESUMO

One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.


Assuntos
Nanocompostos , Polímeros , Humanos , Polímeros/química , Materiais Biocompatíveis/química , Pirróis/química , Compostos Férricos , Nanocompostos/química , Condutividade Elétrica
7.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239952

RESUMO

The applications of non-fullerene acceptor Y6 with a new type of A1-DA2D-A1 framework and its derivatives have increased the power conversion efficiency (PCE) of organic solar cells (OSCs) up to 19%. Researchers have made various modifications of the donor unit, central/terminal acceptor unit, and side alkyl chains of Y6 to study the influences on the photovoltaic properties of OSCs based on them. However, up to now, the effect of changes of terminal acceptor parts of Y6 on the photovoltaic properties is not very clear. In the present work, we have designed four new acceptors-Y6-NO2, Y6-IN, Y6-ERHD, and Y6-CAO-with different terminal groups, which possess diverse electron-withdrawing ability. Computed results show that with the enhanced electron-withdrawing ability of the terminal group, the fundamental gaps become lower; thus, the wavelengths of the main absorption peaks of UV-Vis spectra red-shifts and total oscillator strength increase. Simultaneously, the electron mobility of Y6-NO2, Y6-IN, and Y6-CAO is about six, four, and four times faster than that of Y6, respectively. Overall, Y6-NO2 could be a potential NFA because of its longer intramolecular charge-transfer distance, stronger dipole moment, higher averaged ESP, enhanced spectrum, and faster electron mobility. This work provides a guideline for the future research on modification of Y6.

8.
Inflamm Res ; 71(1): 107-117, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34842937

RESUMO

OBJECTIVE: This study aims to explore the effects of miR-342-3p on liver cancer stem cells (LCSC) and related mechanism. METHODS: LCSC were sorted using immunomagnetic beads and flow cytometry was used to determine CD133+ and CD133- sorted cells. The self-renewal ability and growth ability of LCSC were measured by tumor spheroid formation assay and soft agar colony formation assay. Protein and mRNA expressions of CD44, ALDH1, Bmi1, Sox2 and Oct4 were detected by western blot and quantitative PCR. The relationship between miR-342-3p and HDAC7 was analyzed by dual-luciferase assay. The acetylation level of H3 protein was measured by acetyl Lysine antibody. RESULTS: miR-342-3p overexpression in LCSC lead to lower tumor volume, reduced tumor spheroid formation and agar colony formation rates, as well as lower mRNA and protein expressions of CD44, ALDH1, Bmi1, Sox2, and Oct4. Dual-luciferase reporter assay confirmed HDAC7 as a target gene of miR-342-3p. Inhibition of HDAC7 or overexpression of PTEN suppressed the carcinogenicity and stemness of LCSC. PTEN expression was increased in sh-HDAC7 group and decreased in pcDNA3.1-HDAC7 group. HDAC7 promoted H3 deacetylation and inhibited PTEN expression. Overexpression of HDAC7 or silencing of PTEN could reverse the inhibitory effect of overexpression of miR-342-3p on LCSC carcinogenicity and cell stemness. CONCLUSION: MiR-342-3p inhibited LCSC oncogenicity and cell stemness by promoting PTEN and inhibiting HDAC7.


Assuntos
MicroRNAs , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
9.
Cellulose (Lond) ; 28(13): 8719-8734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316103

RESUMO

Knowledge about the carbohydrate composition of pulp and paper samples is essential for their characterization, further processing, and understanding the properties. In this study, we compare sulfuric acid hydrolysis and acidic methanolysis, followed by GC-MS analysis of the corresponding products, by means of 42 cellulose and polysaccharide samples. Results are discussed and compared to solid-state NMR (crystallinity) and gel permeation chromatography (weight-averaged molecular mass) data. The use of the hydrolysis methods in the context of cellulose conservation science is evaluated, using e-beam treated and artificially aged cellulose samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04048-6.

10.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207601

RESUMO

The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.


Assuntos
Bioimpressão , Neoplasias da Mama , Modelos Biológicos , Neoplasias Epiteliais e Glandulares , Organoides , Impressão Tridimensional , Neoplasias da Próstata , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Nanotecnologia , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Organoides/diagnóstico por imagem , Organoides/metabolismo , Organoides/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Engenharia Tecidual
11.
Mol Carcinog ; 59(2): 141-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31749230

RESUMO

Astrocyte elevated gene-1 (AEG-1) plays a critical role in the development, progression, and metastasis of a variety of cancers, including non-small-cell lung cancer (NSCLC). The objective of the current study is to unravel the upstream signaling of AEG-1. A cohort of 28 NSCLC tissues and 30 normal tissues were collected. Quantitative reverse transcription-polymerase chain reaction and Western blotting were used to examine AEG-1, migration, and invasion related markers in NSCLC cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay coupled with colony formation assay were conducted to monitor cell growth. Transwell assay was performed to determine cell migration and invasion. Apoptotic cells were detected by costaining with Annexin-V-fluorescein isothiocyanate and propidium iodide. Immunofluorescent staining was used to observe the levels of migration and invasion related markers. Xenograft models were used to investigate tumor formation in vivo. Dual-luciferase reporter assay and RNA immunoprecipitation were carried out to determine the interaction between circMTDH.4 and miR-630, as well as the associated between miR-630 and AEG-1. AEG-1 was highly expressed in NSCLC tissues and cell lines. Silencing of AEG-1 inhibited cell proliferation, migration, invasion, and chemoresistance/radioresistance in NCI-H1650 and A549 cells. circMTDH.4 regulated AEG-1 expression via sponging miR-630. Knockdown of circMTDH.4 and/or overexpression of miR-630 inhibited chemoresistance and radioresistance in NSCLC cells, whereas overexpression of AEG-1 or knockdown of miR-630 exerted rescue effects. circMTDH.4/miR-630/AEG-1 axis is responsible for chemoresistance and radioresistance in NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Quimiorradioterapia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Interferência de RNA , Tolerância a Radiação/genética , Transplante Heterólogo
12.
Biomacromolecules ; 21(4): 1560-1567, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32150393

RESUMO

Biodegradable and renewable materials, such as cellulose nanomaterials, have been studied as a replacement material for traditional plastics in the biomedical field. Furthermore, in chronic wound care, modern wound dressings, hydrogels, and active synthetic extracellular matrices promoting tissue regeneration are developed to guide cell growth and differentiation. Cells are guided not only by chemical cues but also through their interaction with the surrounding substrate and its physicochemical properties. Hence, the current work investigated plant-based cellulose nanomaterials and their surface characteristic effects on human dermal fibroblast (HDF) behavior. Four thin cellulose nanomaterial-based coatings produced from microfibrillar cellulose (MFC), cellulose nanocrystals (CNC), and two TEMPO-oxidized cellulose nanofibers (CNF) with different total surface charge were characterized, and HDF viability and adhesion were evaluated. The highest viability and most stable adhesion were on the anionic CNF coating with a surface charge of 1.14 mmol/g. On MFC and CNC coated surfaces, HDFs sedimented but were unable to anchor to the substrate, leading to low viability.


Assuntos
Nanofibras , Nanopartículas , Nanoestruturas , Celulose , Fibroblastos , Humanos
13.
Biomacromolecules ; 19(4): 1245-1255, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522320

RESUMO

It is demonstrated that the molecular solubility of softwood hemicelluloses is significantly influenced by pretreatment of the fibers, extraction, and downstream processing. To quantify these effects, four hemicellulose samples were extracted from different thermomechanical pulps of Norway spruce. The molecular solubility of the samples was characterized by size and molar mass distributions, and the morphology of the molecules was studied using high resolution microscopy techniques. All extracted samples were well dispersed in aqueous media creating transparent dispersions, but dynamic light scattering measurements showed that molecular solubility can only be achieved using specific pretreatments and extractions. The procedure yields acetylated galactoglucomannan (AcGGM)-rich hemicelluloses with an average molar mass of 21-35 kDa and a diameter up to 10 nm but also shows that water is a poor solvent for this sample since an association is detected as soon as the concentration is about 20 g/L. These associated hemicellulose dispersions are still absolutely clear on visual inspection, underlining the need for careful measurement when assessing the solubility of wood hemicelluloses.


Assuntos
Mananas/química , Picea/química , Polissacarídeos/química , Difusão Dinâmica da Luz , Peso Molecular , Solubilidade , Solventes/química
14.
Gen Comp Endocrinol ; 225: 1-12, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342967

RESUMO

Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Ovário/metabolismo , Hipófise/metabolismo , Receptores para Leptina/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Clonagem Molecular , Coturnix/metabolismo , Ingestão de Alimentos/genética , Éxons , Feminino , Leptina/genética , Receptores para Leptina/genética
15.
BMC Genomics ; 16: 763, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26452545

RESUMO

BACKGROUND: Liver is an important metabolic organ that plays a critical role in lipid synthesis, degradation, and transport; however, the molecular regulatory mechanisms of lipid metabolism remain unclear in chicken. In this study, RNA-Seq technology was used to investigate differences in expression profiles of hepatic lipid metabolism-related genes and associated pathways between juvenile and laying hens. The study aimed to broaden the understanding of liver lipid metabolism in chicken, and thereby to help improve laying performance in the poultry industry. RESULTS: RNA-Seq analysis was carried out on total RNA harvested from the liver of juvenile (n = 3) and laying (n = 3) hens. Compared with juvenile hens, 2567 differentially expressed genes (1082 up-regulated and 1485 down-regulated) with P ≤ 0.05 were obtained in laying hens, and 960 of these genes were significantly differentially expressed (SDE) at a false discovery rate (FDR) of ≤0.05 and fold-change ≥2 or ≤0.5. In addition, most of the 198 SDE novel genes (91 up-regulated and 107 down-regulated) were discovered highly expressed, and 332 SDE isoforms were identified. Gene ontology (GO) enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the SDE genes were most enrichment in steroid biosynthesis, PPAR signaling pathway, biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, three amino acid pathways, and pyruvate metabolism (P ≤ 0.05). The top significantly enriched GO terms among the SDE genes included lipid biosynthesis, cholesterol and sterol metabolic, and oxidation reduction, indicating that principal lipogenesis occurred in the liver of laying hens. CONCLUSIONS: This study suggests that the majority of changes at the transcriptome level in laying hen liver were closely related to fat metabolism. Some of the SDE uncharacterized novel genes and alternative splicing isoforms that were detected might also take part in lipid metabolism, although this needs further investigation. This study provides valuable information about the expression profiles of mRNAs from chicken liver, and in-depth functional investigations of these mRNAs could provide new insights into the molecular networks of lipid metabolism in chicken liver.


Assuntos
Galinhas/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Transcriptoma/genética , Animais , Galinhas/crescimento & desenvolvimento , Colesterol/genética , Colesterol/metabolismo , Ovos , Feminino , Perfilação da Expressão Gênica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais
16.
Tumour Biol ; 35(1): 363-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23918304

RESUMO

Sphingosine kinase 2 (SphK2) as a conserved lipid kinase has not been thoroughly elucidated in non-small cell lung cancer (NSCLC). The aim of the present study was to evaluate the expression of SphK2 in NSCLC tissues and to determine its correlation with clinicopathologic characteristics and its impact on patient prognosis. We assessed the expression of SphK2 and proliferating cell nuclear antigen (PCNA) (as a proliferative index) by immunohistochemistry in 180 NSCLC patient's formalin-fixed paraffin-embedded tissue blocks. Relationship between the expression of SphK2 and PCNA and various clinicopathological features in these patients was evaluated. We detected that expression of SphK2 was gradually upregulated from normal, metaplasia/dysplasia tissues to NSCLC tissues. At the same time, PCNA expression followed a similar pattern. Statistical analysis showed that expression of SphK2 in NSCLC tissues was strongly associated with PCNA expression, histology grade, live vaccine strain invasion, lymph node status, clinical stage, tumors size, and histology type. Patients with SphK2 overexpression in their tissues had lower overall survival (OS) and disease-free survival (DFS) rates than those with low SphK2 expression. Using uni- and multivariate analysis, we found that SphK2 overexpression was an independent prognostic factor for both OS and DFS. The expression of SphK2 parallels the progression of NSCLC, and SphK2 overexpression may represent a novel and potentially independent biomarker for the prognosis of patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prognóstico , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Risco , Carga Tumoral
17.
Tumour Biol ; 35(3): 2747-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24213928

RESUMO

RNA-binding factor 1 (AUF1) was found to be up-regulated in numerous tumors compared with untransformed tissues. Furthermore, it has been identified to regulate mRNAs en masse in hepatocellular carcinoma (HCC). Metadherin (MTDH) as a novel oncogene also promotes tumor progression and metastasis in HCC. Our study aimed to investigate the correlation between AUF1 and MTDH expressions by immunochemistry in 146 HCC patients from Heilongjiang region. AUF1 expression in HCC tumors was higher than that in the matched normal liver tissues. Particularly, AUF1 overexpression was closely associated with tumor size (P < 0.022), TNM stage (P < 0.003), hepatitis B surface antigen status, and AFP serum levels (P < 0.05). Furthermore, AUF1 overexpression led to poor outcome during 5-year follow-up (P < 0.001). Additionally, AUF1 and MTDH expressions were correlated with each other. Our findings suggest that the AUF1 gene may play an important role in HCC progression and be a novel biomarker in the future.


Assuntos
Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/biossíntese , Neoplasias Hepáticas/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Progressão da Doença , Feminino , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas de Ligação a RNA , Análise de Sobrevida
18.
Biomacromolecules ; 15(10): 3655-63, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25162821

RESUMO

In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Celulose/química , Nanopartículas Metálicas/química , Polímeros/química , Pirróis/química , Compostos de Prata/química , Compostos de Prata/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Microscopia Eletrônica de Transmissão/métodos , Polimerização , Polímeros/farmacologia , Pirróis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
19.
Int J Biol Macromol ; 267(Pt 2): 131490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604423

RESUMO

There is a growing interest in utilizing renewable biomass resources to manufacture environmentally friendly active food packaging, against the petroleum-based polymers. Cellulose nanofibers (CNFs) have received significant attention recently due to their sustainability, biodegradability, and widely available sources. CNFs are generally obtained through chemical or physical treatment, wherein the original surface chemistry and interfacial interactions can be changed if the functionalization process is applied. This review focuses on promising and sustainable methods of functionalization to broaden the potential uses of CNFs in active food packaging. Novel aspects, including functionalization before, during and after cellulose isolation, and functionalization during and after material processing are addressed. The CNF-involved structural construction including films, membranes, hydrogels, aerogels, foams, and microcapsules, is illustrated, which enables to explore the correlations between structure and performance in active food packaging. Additionally, the enhancement of CNFs on multiple properties of active food packaging are discussed, in which the interaction between active packaging systems and encapsulated food or the internal environment are highlighted. This review emphasizes novel approaches and emerging trends that have the potential to revolutionize the field, paving the way for advancements in the properties and applications of CNF-involved active food packaging.


Assuntos
Celulose , Embalagem de Alimentos , Nanofibras , Embalagem de Alimentos/métodos , Nanofibras/química , Celulose/química , Hidrogéis/química
20.
Carbohydr Polym ; 335: 122089, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616078

RESUMO

As a contribution to expand accessibility in the territory of bio-based nanomaterials, we demonstrate a novel material strategy to convert amorphous xylan preserved in wood biomass to hierarchical assemblies of crystalline nanoxylan on a multi-length scale. By reducing the end group in pressurized hot water extracted (PHWE) xylan to primary alcohol as a xylitol form with borohydride reduction, the endwise-peeling depolymerization is effectively impeded in the alkali-catalyzed hydrolytic cleavage of side substitutions in xylan. Nanoprecipitation by a gradual pH decrease resulted in a stable hydrocolloid dispersion in the form of worm-like nanoclusters assembled with primary crystallites, owing to the self-assembly of debranched xylan driven by strong intra- and inter-chain H-bonds. With evaporation-induced self-assembly, we can further construct the hydrocolloids as dry submicron spheroids of crystalline nanoxylan (CNX) with a high average elastic modulus of 47-83 GPa. Taking the advantage that the chain length and homogeneity of PHWE-xylan can be tailored, a structure-performance correlation was established between the structural order in CNX and the phosphorescent emission of this crystalline biopolymer. Rigid clusterization and high crystallinity that are constructed by strong intra- and inter-molecule interactions within the nanoxylan effectively restrict the molecular motion, thereby promoting the emission of ultralong organic phosphorescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA