Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Nutr ; 154(4): 1101-1108, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340959

RESUMO

BACKGROUND: Weaning usually causes low feed intake and weight loss in piglets, which mobilizes lipid to energize. The microbe-derived antioxidants (MAs) exhibit great potential in antioxidation, anti-inflammation, and metabolic regulation. OBJECTIVES: We aimed to investigate the changes of lipid metabolism postweaning and effects of MA on growth performance and hepatic lipid metabolism in weanling piglets. METHODS: In the first experiment, piglets weaned at 21 d of age were slaughtered on weaning day (d0), 4 (d4), and 14 (d14) postweaning (6 piglets per day). In the second experiment, piglets were divided into 2 groups, receiving MA (MA) and saline gavage (CON), respectively. All piglets were weaned at 21 d of age and 6 piglets from each group were slaughtered at 25 d of age. RESULTS: In experiment 1, the serum triglyceride, total cholesterol (TC), and LDL cholesterol on d4 and d14 declined significantly compared with d0 (P < 0.05). The serum leptin on d0 was higher than that on d4 and d14 (P < 0.05). The serum ghrelin kept increasing from d0 to d14 (P < 0.05). The hepatic hormone-sensitive lipase and adipose triglyceride lipase first increased from d0 to d4 and then decreased from d4 to d14 (P < 0.05). In experiment 2, the average daily gain and average daily feed intake from 21 to 25 d of age increased in the MA group compared with the CON group (P < 0.05). The serum TC, hepatic TC, and glucose of MA group showed a significant increase than that of the CON group (P < 0.05). The expression of SCD1, ACAT2, and PPARγ were upregulated in the MA group (P < 0.05). Contrary to the decreased expression of phosphorylation of adenosine 5'-monophosphate-activated protein kinase alfa subunit (Thr172), the nuclear sterol regulatory element-binding protein 1c, fatty acid synthase, and peroxisome proliferator-activated receptor gamma of MA group increased than that of CON group (P < 0.05). CONCLUSIONS: Weaning promoted hepatic lipolysis and MA could enhance lipid synthesis by regulating adenosine 5'-monophosphate-activated protein kinase alfa subunit-sterol regulatory element-binding protein 1c pathway, thus improving growth performance of weanling piglets.


Assuntos
Antioxidantes , Metabolismo dos Lipídeos , Animais , Antioxidantes/metabolismo , Proteínas Quinases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Suínos , Desmame
2.
Food Microbiol ; 120: 104449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431336

RESUMO

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Assuntos
Burkholderia gladioli , Oryza , Ácido Bongcréquico/análise , Óleo de Soja/análise , Amido , Contaminação de Alimentos/análise , Farinha/análise
3.
J Transl Med ; 21(1): 441, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407961

RESUMO

Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.


Assuntos
Células Endoteliais , Transdução de Sinais , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Neovascularização Fisiológica , Mitocôndrias
4.
Crit Rev Food Sci Nutr ; 63(32): 11044-11062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35694766

RESUMO

Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.


Assuntos
Quitosana , Indústria de Processamento de Alimentos
5.
Macromol Rapid Commun ; 44(23): e2300325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566735

RESUMO

Biocompatible chitosan-based hydrogels have attracted extensive attention in wound dressing due to their human skin-like tissue characteristics. However, it is a crucial challenge to fabricate chitosan-based hydrogels with versatile properties, including flexibility, stretchability, adhesivity, and antibacterial activity. In this work, a kind of chitosan-based hydrogels with integrated functionalities are facilely prepared by solution polymerization of acrylamide (AAm) and sodium p-styrene sulfonate (SS) in the presence of quaternized carboxymethyl chitosan (QCMCS). Due to the dual cross-linking between QCMCS and P(AAm-co-SS), the optimized QCMCS/P(AAm-co-SS) hydrogel exhibits tough mechanical properties (0.767 MPa tensile stress and 1100% fracture strain) and moderate tissue adhesion (11.4 kPa). Moreover, biological evaluation in vitro illustrated that as-prepared hydrogel possesses satisfactory biocompatibility, hemocompatibility, and excellent antibacterial ability (against S. aureus and E. coli are 98.8% and 97.3%, respectively). Then, the hydrogels are tested in a rat model for bacterial infection incision in vivo, and the results show that they can significantly accelerate epidermal regeneration and wound closure. This is due to their ability to reduce the inflammatory response, promote the formation of collagen deposition and granulation tissue. The proposed chitosan-based antibacterial hydrogels have the potential to be a highly effective wound dressing in clinical wound healing.


Assuntos
Quitosana , Ratos , Animais , Humanos , Hidrogéis/farmacologia , Adesivos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Bandagens
6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834674

RESUMO

Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee's index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and ß-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Lipodistrofia , Camundongos , Animais , Antioxidantes/farmacologia , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Anti-Inflamatórios/farmacologia , Lipodistrofia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
7.
Ecotoxicol Environ Saf ; 232: 113219, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104775

RESUMO

Environmental excessive cobalt (Co) exposure increases risks of public health. This study aimed to evaluate the potential mechanism of microbe-derived antioxidants (MA) blend fermented by probiotics in attenuating cobalt chloride (CoCl2)-induced toxicology in buffalo rat liver (BRL3A) cells. Herein, results showed that some phenolic acids increased in MA compared with the samples before fermentation through UHPLC-QTOF-MS analysis. Also, the contents of essential and non-essential amino acids, their derivatives and minerals were rich in MA. The DPPH, O2-, OH- and ABTS+ scavenging ability of MA is comparable to those of vitamin C and better than mitoquinone mesylate (mitoQ). In vitro cell experiments showed that CoCl2 treatment increased the percentage of apoptosis cells, lactate dehydrogenase and genes involved in glycolysis, increased ATP production and decreased mitochondrial membrane potential, increased genes involved in canonical autophagy process (including initiation, autophagosomes maturation and fusion with lysosome) and BNIP3-dependent mitophagy pathways in BRL3A cells, while MA attenuated CoCl2-induced reactive oxygen species (ROS) production, apoptosis, mitochondrial protein expression and dysfunction, and BNIP3-dependent mitophagy. Collectively, these results provide insights into the role of MA in reversing CoCl2-induced toxicology in BRL3A cells, providing the promising constituents for decreasing Co-induced toxicology in functional foods.


Assuntos
Antioxidantes , Mitofagia , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia , Cobalto/metabolismo , Cobalto/toxicidade , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293333

RESUMO

Inflammation plays an important role in the innate immune response, yet overproduction of inflammation can lead to a variety of chronic diseases associated with the innate immune system; therefore, modulation of the excessive inflammatory response has been considered a major strategy in the treatment of inflammatory diseases. Activation of the ROS/NLRP3/IL-1ß signaling axis has been suggested to be a key initiating phase of inflammation. Our previous study found that microbe-derived antioxidants (MA) are shown to have excellent antioxidant and anti-inflammatory properties; however, the mechanism of action of MA remains unclear. The current study aims to investigate whether MA could protect cells from LPS-induced oxidative stress and inflammatory responses by modulating the Nrf2-ROS-NLRP3-IL-1ß signaling pathway. In this study, we find that MA treatment significantly alleviates LPS-induced oxidative stress and inflammatory responses in RAW264.7 cells. MA significantly reduce the accumulation of ROS in RAW264.7 cells, down-regulate the levels of pro-inflammatory factors (TNF-α and IL-6), inhibit NLRP3, ASC, caspase-1 mRNA, and protein levels, and reduce the mRNA, protein levels, and content of inflammatory factors (IL-1ß and IL-18). The protective effect of MA is significantly reduced after the siRNA knockdown of the NLRP3 gene, presumably related to the ability of MA to inhibit the ROS-NLRP3-IL-1ß signaling pathway. MA is able to reduce the accumulation of ROS and alleviate oxidative stress by increasing the content of antioxidant enzymes, such as SOD, GSH-Px, and CAT. The protective effect of MA may be due to its ability of MA to induce Nrf2 to enter the nucleus and initiate the expression of antioxidant enzymes. The antioxidant properties of MA are further enhanced in the presence of the Nrf2 activator SFN. After the siRNA knockdown of the Nrf2 gene, the antioxidant and anti-inflammatory properties of MA are significantly affected. These findings suggest that MA may inhibit the LPS-stimulated ROS/NLRP3/IL-1ß signaling axis by activating Nrf2-antioxidant signaling in RAW264.7 cells. As a result of this study, MA has been found to alleviate inflammatory responses and holds promise as a therapeutic agent for inflammation-related diseases.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-18 , Interleucina-6/farmacologia , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684784

RESUMO

This work investigated the preparation, characterization, antioxidant, and anti-inflammation capacities of Flammulina velutipes polyphenols (FVP) and fermented FVP (FFVP). The results revealed that the new syringic acid, accounting for 22.22%, was obtained after fermentation (FFVP). FFVP exhibits higher antioxidant and anti-inflammation activities than FVP, enhancing cell viability and phagocytosis, inhibiting the secretion of NO and ROS, and reducing the inflammatory response of RAW264.7 cells. This study revealed that FFVP provides a theoretical reference for in-depth study of its regulatory mechanisms and further development of functional antioxidants that are applicable in the food and health industry.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Flammulina/química , Polifenóis/química , Polifenóis/farmacologia , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fermentação , Inflamassomos/antagonistas & inibidores , Camundongos , Microscopia Eletrônica de Varredura , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Fish Shellfish Immunol ; 102: 336-349, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32360278

RESUMO

The study investigated whether dietary berberine supplementation could improve intestinal barrier against inflammation induced by high-fat and high-carbohydrate diets in blunt snout bream. Fish (average initial weight 44.83 ± 0.06 g) were fed with six kinds of diets (control, high-fat diet (10% lipid) and high-carbohydrate (43% nitrogen-free extract) diet, control/berberine, high-fat/berberine or high-carbohydrate/berberine) for 8 weeks, respectively. Feeding mode of berberine (50 mg/kg diet) was adopted to two-week interval. After feeding trial, fish growth performance and intestinal barrier function were estimated. The result showed that no significant interactions between diet and berberine in growth performance, whole body composition or protein utilization were observed (P > 0.05). Specific growth rate (SGR) and feed conversion ratio (FCR) were significantly affected by berberine (P < 0.05). Protein efficiency ratio (PER), nitrogen retention (NRE), fish whole-body lipid contents increased greatly in high-fat or high-carbohydrate diets (P < 0.05). Significant interactions between diet and berberine were observed in fish intestinal barrier (physical, chemical, immunological and microbiological barriers) (P < 0.05). High-fat and high-carbohydrate diets could increase significantly intestinal permeability and inflammatory response, decrease intestinal mucins gene expression levels, and make the intestinal microbiota out of balance (P < 0.05). Berberine significantly inhibited inflammation response and modulated intestinal microflora profile (P < 0.05). Taken together, berberine could alleviate intestinal barrier damage injured by high-fat or high-carbohydrate diet and improve the growth performance of blunt snout bream.


Assuntos
Berberina/metabolismo , Cyprinidae/imunologia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/fisiologia , Ração Animal/análise , Animais , Berberina/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Distribuição Aleatória
11.
Am J Physiol Cell Physiol ; 316(2): C198-C209, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485137

RESUMO

Significant embryo loss remains a serious problem in pig production. Reactive oxygen species (ROS) play a critical role in embryonic implantation and placentation. However, the potential mechanism of ROS on porcine trophectoderm (pTr) cell fate during the peri-implantation period has not been investigated. This study aimed to elucidate the effects of ROS on pTr cell phenotypes and the regulatory role in cell attachment and differentiation. Herein, results showed that exogenous H2O2 inhibited pTr cell viability, arrested the cell cycle at S and G2/M phases, and increased cell apoptosis and autophagy protein light chain 3B and Beclin-1, whereas these effects were reversed by different concentrations of N-acetyl-l-cysteine (NAC) posttreatment. In addition, NAC abolished H2O2-induced autophagic flux, inhibited intracellular and mitochondrial ROS, and restored expression of genes important for mitochondrial DNA and biogenesis, cell attachment, and differentiation. NAC reversed H2O2-activated MAPK and Akt/mammalian target of rapamycin pathways in dose-dependent manners. Furthermore, analyses with pharmacological and RNA interference approaches suggested that autophagy regulated cell apoptosis and gene expression of caudal-related homeobox 2 and IL-1ß. Collectively, these results provide new insights into the role of the ROS-induced autophagy in pTr cell apoptosis, attachment, and differentiation, indicating a promising target for decreasing porcine conceptus loss during the peri-implantation period.


Assuntos
Autofagia/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Ectoderma/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Suínos , Trofoblastos/efeitos dos fármacos
12.
Langmuir ; 35(35): 11503-11511, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31365824

RESUMO

Development of advanced fluorescent materials for constructing a secure and unclonable encryption is urgently required; however, their application in anti-counterfeiting applications is a great challenge. In this work, we proposed and synthesized a new type of upconversion nanoparticles@carbon dots@meso-SiO2 nanohybrids by integrating two fluorescent materials of lanthanide-doped NaYF4 upconversion nanoparticles (UCNPs) and carbon dots (CDs) into mesoporous silica (mSiO2) to produce a novel sandwichlike core-shell structure and a dual-mode fluorescence from UCNPs and CDs. By tailoring the UCNP core of different upconversion luminescence, all three kinds of dual-mode luminescent UCNPs@CDs@mSiO2 nanohybrids exhibited typical RGB upconversion luminescence under a 980 nm laser and blue downconversion luminescence under a 365 nm UV light. Due to strong the hydrophilic nature of the nanohybrids, they can be further fabricated into environmentally benign luminescent inks for creating highly secured, fluorescent-based, three-dimensional anti-counterfeiting barcodes via inkjet printing. The resultant UCNPs@CDs@mSiO2 inks with a dual-mode and tunable luminescence nature endow the inkjet-printing barcodes with an extremely high encoding capacity and high security. Such dual-mode fluorescent inks and barcodes are simple to fabricate, easy to view, efficient for coding, and difficult to clone, thus making them promising nanomaterials for anti-counterfeiting applications.

13.
Langmuir ; 35(9): 3576-3584, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721070

RESUMO

Surface hydration has been proposed as the key antifouling mechanism of antifouling materials. However, molecular-level details of the structure, dynamics, and interactions of interfacial water around antifouling polymers still remain elusive. In this work, using all-atom molecular dynamics (MD) simulations, we studied four different acrylamides (AMs) for their interfacial water behaviors and their interactions with a protein, with special attention to the effect of carbon spacer lengths (CSLs) on the hydration properties of AMs. Collective MD simulation data revealed that although all four AMs displayed strong hydration, N-hydroxymethyl acrylamide (HMAA) and N-(2-hydroxyethyl)acrylamide (HEAA) with shorter CSLs displayed a longer residence time, slower self-diffusion, and lower coordination number of interfacial water molecules than N-(3-hydroxypropyl)acrylamide (HPAA) and N-(5-hydroxypentyl)-acrylamide (HPenAA) with longer CSLs. The shorter CSLs allow water molecules to form bridging hydrogen bonds with different hydrophilic groups in the same AM chain, thus enhancing the hydration capacity of AMs. Consequently, different from HPenAA, which had a weak but detectable interaction with the protein, HMAA, HEAA, and HPAA had almost zero interactions with the protein. This computational work provides a better fundamental understanding of the surface hydration and protein interaction of different AMs with subtle structural changes from structural, dynamic, and energy aspects at the atomic level, which hopefully will guide the design of new and effective nonfouling materials.

14.
Fish Shellfish Immunol ; 88: 518-527, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30880233

RESUMO

The objective of this work was to investigate the effect of berberine (BBR) on the Cell viability, lipid accumulation, apoptosis, cytochrome c, caspase-9 and caspase-3 in lipid accumulation-hepatocytes induced by sodium palmitate in vitro. The lipid accumulation-hepatocytes (induced by 0.5 mM sodium palmitate for 24 h) were treated with 5 µM berberine for 12 h. Then, the Cell viability, intracellular triglyceride (TG) content, lipid peroxide (LPO), malonaldehyde (MDA) content, cytochrome c, caspase-9, caspase-3 and apoptosis were detected. Sodium palmitate decreased Cell viability and increased intracellular TG content, lipid droplet accumulation, LPO and MDA concentrations, caused caspase-3 and caspase-9 activation, then led to apoptosis accompanied by cytochrome c release from mitochondria into the cytoplasm. Beberine could improve intracellular lipid droplet accumulation and oxidative stress, while reduce apoptosis induced by sodium palmitate.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/farmacologia , Carpas , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Animais , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Triglicerídeos/metabolismo
15.
Biotechnol Appl Biochem ; 66(1): 4-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315709

RESUMO

Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.


Assuntos
Sequestradores de Radicais Livres/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia
16.
J Nanosci Nanotechnol ; 18(12): 8207-8215, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189939

RESUMO

Well-defined and mono-dispersed lanthanide-ion-doped NaYF4 up-conversion nanoparticles (UCNPs) were synthesized via thermal decomposition using lanthanide oleate as the precursor. By rational selecting the dopant pairs of the doped lanthanide ions (Y3+, Yb3+, Er3+ and Tm3+) with accurate molar ratios, three-primary-color (RGB) UCNPs which exhibited green (UCNPs-G), blue (UCNPs-B) and red (UCNPs-R) fluorescence, respectively, were prepared. The X-ray diffraction (XRD) patterns showed that the three UCNPs were purely hexagonal-phase NaYF4 crystals. Transmission electron microscopy (TEM) images revealed that the synthesized UCNPs exhibited well-defined nanosphere morphology with uniform size distribution. The average diameters were 23.95±3.35 nm for UCNPs-G, 20.63±2.59 nm for UCNPs-B, and 19.24±2.37 nm for UCNPs-R, respectively. After surface modification employing polyacrylic acid (PAA) as modifier, the obtained UCNPs were converted to be hydrophilic, which can be used as fillers to construct luminescent polymer films and luminescent ink in anti-counterfeiting application.

17.
J Nanosci Nanotechnol ; 18(12): 8258-8268, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189945

RESUMO

In this study, well-defined PAA-coated NaYF4:Yb3+, Er3+ nanophosphors were synthesized via a poly(acrylic acid) (PAA) mediated hydrothermal process. The rational control of initial reaction conditions, such as hydrothermal temperature, pH value of precursor-solution, added amount of PAA, and molecular weight of PAA ligand, resulted in upconversion of NaYF4:Yb3+, Er3+ phosphors with varying crystal phases (α and ß) and morphologies (e.g., nanosphere, submicrorod, microrod, microtube, and microprism). By assessing the upconversion luminescent properties of the synthesized NaYF4:Yb3+, Er3+ phosphors upon excitation by 980 nm infrared light, it was demonstrated that the ß-phase NaYF4:Yb3+, Er3+ phosphors generally presented stronger upconversion luminescent than α-phase NaYF4:Yb3+, Er3+ phosphors and orthorhombic phase of YF3:Yb3+, Er3+ sample. Additionally, the ß-phase NaYF4:Yb3+, Er3+ phosphors with hollow microtube morphology presented higher upconversion luminescent intensity than phosphors of other morphologies. This may be due to microtubes having larger surface area (inner and outer surfaces), which promoted the absorption efficiency under similar excitation conditions, therefore generating higher luminescent intensity. Findings form this study suggest for precisely controlled growth of other complex rare earth fluoride compounds and provide a reference for exploration of component-, phase- and morphology-dependent upconversion luminescence properties.

18.
Langmuir ; 33(49): 13964-13972, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29160706

RESUMO

The rational design of biomaterials with antifouling properties still remains a challenge, although this is important for many bench-to-bedside applications for biomedical implants, drug delivery carriers, and marine coatings. Herein, we synthesized and characterized poly(N-acryloylglycinamide) (polyNAGA) and then grafted poly(NAGA) onto Au substrate to form polymer brushes with well-controlled film stability, wettability, and thickness using surface-initiated atom transfer radical polymerization (SI-ATRP). The NAGA monomer integrates two hydrophilic amides on the side chain to enhance surface hydration, which is thought as a critical contributor to its antifouling property. The antifouling performances of poly(NAGA) brushes of different film thicknesses were then rigorously assessed and compared using protein adsorption assay from undiluted blood serum and plasma, cell-adhesive assay, and bacterial assay. The resulting poly(NAGA) brushes with a film thickness of 25-35 nm exhibited excellent in vitro antifouling ability to prevent unwanted protein adsorption (<0.3 ng/cm2) and bacterial and cell attachments up to 3 days. Molecular dynamics (MD) simulations further showed that two hydrophilic amide groups can interact with water molecules strongly to form a strong hydration layer via coordinated hydrogen bonds. This confirms a positive correlation between antifouling property and surface hydration. In line with a series of polyacrylamides and polyacrylates as antifouling materials synthesized in our lab, we propose that small structural changes in the pendent groups of polymers could largely improve the antifouling capacity, which may be used as a general design rule for developing next-generation antifouling materials.

19.
J Nanosci Nanotechnol ; 15(2): 1229-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353638

RESUMO

The basic magnesium hypochlorite (BMH) nanoparticles were prepared by two micro-emulsion techniques and modified with sodium stearate. The influences of the main technical parameters such as the addition amount of sodium stearate, reaction temperature and reaction time on the Lipophilic degree (LD) of the modified BMH nanoparticles were investigated. The characteristics of the BMH nanoparticles were analysed by means of Malvern Instruments, transmission electron microscopy (TEM), water contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TGA). The antimicrobial activity of the modified BMH nanoparticles was investigated with the antibacterial circle test. The results showed that the average size of the BMH nanoparticles was 305 nm. The BMH nanoparticles had been successfully modified by sodium stearate and the LD of.the modified BMH nanoparticles was 8.4% when the addition amount of sodium stearate was 0.15 g, the reaction temperature was 10 °C and the reaction time was 5 h. The dispersibility and hydrophobicity of the modified BMH nanoparticles were improved and the contact angle was up to 103 °, the modified BMH nanoparticles still had excellent antimicrobial activity after modification.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Ácidos Esteáricos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Hipocloroso/química , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
20.
J Nanosci Nanotechnol ; 14(7): 5157-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757995

RESUMO

Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA