Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Sci Technol ; 57(8): 3206-3217, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36730723

RESUMO

Nanoplastics (NPs), as emerging contaminants, have attracted increasing attention for their effects on human exposure and potential health risks. The protein corona formed on the surface of NPs affects the biological activity and fate of the NPs in vivo. However, how environmental aging, an inevitable process once NPs enter the environment, affects the formation of protein corona on NPs is still unclear. This study investigated the changes in the compositions of protein corona formed on photo-aged polystyrene (PS) NPs in human bronchoalveolar lavage fluid (BALF), corresponding to the inhalation exposure pathway. The results demonstrated that both the species and abundance of proteins in the BALF protein corona on the surface of PS NPs were altered by aging. In addition, the aged PS NPs are more hydrophilic and less electronegative than the pristine PS NPs; hence, there is an increased sorption of more negatively charged hydrophilic proteins. Moreover, aging-induced alterations in BALF protein corona enhanced the uptake of aged PS NPs by lung macrophages J774A.1 through phagocytosis and clathrin-mediated endocytosis. These findings highlight the importance of environmental aging processes in the biosafety assessment of nanoplastics.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Idoso , Coroa de Proteína/metabolismo , Microplásticos , Macrófagos/metabolismo , Transporte Biológico , Poliestirenos
2.
Ecotoxicol Environ Saf ; 256: 114896, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054474

RESUMO

Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.


Assuntos
Triclosan , Gravidez , Animais , Feminino , Criança , Humanos , Mamíferos , Morfogênese/fisiologia , Pulmão , Proteína Morfogenética Óssea 4
3.
Ecotoxicol Environ Saf ; 247: 114266, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334339

RESUMO

Particulate matter 2.5 (PM2.5) is a widely known atmospheric pollutant which can induce the aging-related pulmonary diseases such as acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD) and interstitial pulmonary fibrosis (IPF). In recent years, with the increasing atmospheric pollution, airborne fine PM2.5, which is an integral part of air pollutants, has become a thorny problem. Hence, this study focused on the effect of PM2.5 on cellular senescence in the lung, identifying which inflammatory pathway mediated PM2.5-induced cellular senescence and how to play a protective role against this issue. Our data suggested that PM2.5 induced time- and concentration-dependent increasement in the senescence of A549 cells. Using an inhibitor of cGAS (PF-06928215) and an inhibitor of NF-κB (BAY 11-7082), it was revealed that PM2.5-induced senescence was regulated by inflammatory response, which was closely related to the cGAS/STING/NF-κB pathway activated by DNA damage. Moreover, our study also showed that the pretreatment with selenomethionine (Se-Met) could inhibit inflammatory response and prevent cellular senescence by hindering cGAS/STING/NF-κB pathway in A549 cells exposed to PM2.5. Furthermore, in vivo C57BL/6J mice model demonstrated that aging of mouse lung tissue caused by PM2.5 was attenuated by decreasing cGAS expression after Se-Met treatment. Our findings indicated that selenium made a defense capability for PM2.5-induced cellular senescence in the lung, which provided a novel insight for resisting the harm of PM2.5 to human health.


Assuntos
NF-kappa B , Selenometionina , Animais , Humanos , Camundongos , Antioxidantes , Senescência Celular , Pulmão , Camundongos Endogâmicos C57BL , Nucleotidiltransferases , Material Particulado/toxicidade
4.
Chem Res Toxicol ; 34(4): 1114-1123, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739826

RESUMO

Methylmercury (MeHg) is a common organic form of mercury in water, which has been linked to several forms of biological toxicity. However, studies on the ecotoxicity risk of long-term exposure to low-dose MeHg are insufficient for the assessment of environmental safety. In the present study, the effects of MeHg on multiple generations (P0-F3) and population of Caenorhabditis elegans were investigated under long-term, low-dose exposure. We investigated the multigenerational toxicity of MeHg by analyzing reproductive and developmental indicators. According to our results, exposure to 100 nM MeHg had little effect on the parental generation (P0) but caused serious reproductive toxicity in the offspring (F1-F3), and the effect of MeHg was aggravated with each passing generation. The genes related to apoptosis and DNA damage were upregulated in the F3 generation. Pearson correlation analysis showed that the changes in these genes were closely related to the apoptosis of gonadal cells. Furthermore, chronic exposure to MeHg (from 100 to 1000 nM group) caused a sharp decline in population size and triggered the "bag of worms" phenotype. Genes related to vulvar development were downregulated in the F3 generation after treatment with 100 nM MeHg. These data suggest that long-term low-dose MeHg exposure adversely affected C. elegans and its offspring and triggered multigenerational toxicity and population discrepancy.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Ecotoxicologia , Compostos de Metilmercúrio/administração & dosagem , Reprodução/efeitos dos fármacos
5.
Ecotoxicol Environ Saf ; 208: 111579, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396102

RESUMO

Studies about radiation damage in vivo are very significant for healthy risk assessment as well as cancer radiotherapy. Ceramide as a second messenger has been found to be related to radiation-induced apoptosis. However, the detailed mechanisms in living systems are still not fully understood. In the present study, the effects of ceramide in gamma radiation-induced response were investigated using Caenorhabditis elegans. Our results indicated that ceramide was required for gamma radiation-induced whole-body germ cell apoptosis by the production of radical oxygen species and decrease of mitochondrial transmembrane potential. Using genetic ceramide synthase-related mutated strains and exogenous C16-ceramide, we illustrated that ceramide could regulate DNA damage response (DDR) pathway to mediate radiation-induced germ cell apoptosis. Moreover, ceramide was found to function epistatic to pmk-1 and mpk-1 in MAPK pathway to promote radiation-induced apoptosis in Caenorhabditis elegans. These results demonstrated ceramide could potentially mediated gamma radiation-induced apoptosis through regulating mitochondrial function, DDR pathway and MAPK pathway.


Assuntos
Caenorhabditis elegans/fisiologia , Ceramidas/farmacologia , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Dano ao DNA , Células Germinativas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Radiação , Espécies Reativas de Oxigênio/metabolismo
6.
Ecotoxicol Environ Saf ; 204: 111070, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763567

RESUMO

Silver nanoparticles (AgNPs) are widely used as antimicrobial agents and resulted in their accumulation in environment. The purpose of this study was to investigate the detailed molecular mechanisms underlying AgNP-induced lung cellular senescence which has been proposed as a pathogenic driver of chronic lung disease. Herein, we demonstrate that exposure to AgNPs elevates multiple senescence biomarkers in lung cells, with cell cycle arrest in the G2/M phase, and potently activates genes of the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cell line MRC5. Fluorescence-based assay also reveals that apoptosis induced by AgNPs is associated with senescence. Furthermore, we show that AgNPs cause premature senescence through an increase in transcription factor nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX2) expression and over-production of prostaglandin E2 (PGE2) in lung cells. Inhibition of COX2 reduces AgNPs-induced senescence to a normal level. Moreover, AgNPs also induce upregulation of COX2 and accelerate lung cellular senescence in vivo and cause mild fibrosis in the lung tissue of mice. Taken together, our studies support a critical role of AgNPs in the induction of lung cellular senescence via the upregulation of the COX2/PGE2 intracrine pathway, and suggest the adverse effects to the human respiratory system.


Assuntos
Senescência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Prata/metabolismo
7.
Chem Res Toxicol ; 31(7): 594-600, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29882401

RESUMO

Owing to complex microenvironmental conditions, it is challenging to reflect the actual biological responses of tissues or the body in a two-dimensional (2D) cellular system. In the present study, a low-attachment-cultivation technique was employed to establish a highly sensitive 3D human-hamster hybrid (AL) model to study the mutagenic effects of environmental pollutants. The results showed that the established 3D system has apparent organizational characteristics. The average diameter and average cell number of the 3D cells were approximately 240 µm and 1500, respectively. The expression of stemness and cell-junction genes (biomarkers for 3D cells) was higher than that in 2D cells. The present study analyzed the mutagenic effects of the environmental carcinogens arsenite and silver nanoparticles using the established 3D system to demonstrate its efficiency in mutagenic assessment. The results showed that the mutagenic effects of arsenite (10 µM) and silver nanoparticles (10 µg/mL) were 70 ± 3 and 99 ± 7 per 105 survivors, respectively. These values were much lower than those from 2D AL cells and comparable to those from the in vivo system. These results suggest that the developed 3D-cell-culture model based on the 2D AL cellular system more effectively reflects the actual gene-mutation frequency of mutagens in vivo.


Assuntos
Arsenitos/toxicidade , Carcinógenos/toxicidade , Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Biomarcadores/metabolismo , Carcinógenos/química , Técnicas de Cultura de Células , Conexina 43/genética , Conexina 43/metabolismo , Cricetinae , Humanos , Células Híbridas , Nanopartículas Metálicas/química , Mutação , Prata/química
8.
Ecotoxicol Environ Saf ; 165: 291-298, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30205331

RESUMO

The behavior of silver nanoparticles (AgNPs) is influenced by environmental factors which altered their bioaccumulation and toxicity. In this study, we comprehensively investigated the influence of ionic strength on the ecotoxicity of AgNPs to Caenorhabditis elegans (C. elegans) through the transfer from Escherichia coli (E. coli). Three different exposure media (deionized water, EPA water and KM) were used to pretreat AgNPs. E. coli was then exposed to these transformed AgNPs and fed to C. elegans. Our results indicated that ionic strength significantly enhanced the reproductive toxicity (germ cell corpses, brood size and lifespan) and neurotoxicity (head trash and body bend) of AgNPs in C. elegans. Moreover, ICP-MS analysis showed that higher ionic strength increased bioaccumulation of AgNPs in E. coli and the resulting Ag body burden of E. coli affected the transfer of AgNPs to C. elegans, which might be responsible for the increased toxicity to nematodes. Furthermore, we also found that the reactive oxygen species (ROS) level in C. elegans was significantly increased after exposed to E. coli contaminated with ionic strength-treated AgNPs, which might play another important role for the enhanced toxicity of AgNPs. Overall, this study showed that the bioavailability and potential ecotoxicity of AgNPs are associated with the environmental factors.


Assuntos
Caenorhabditis elegans/fisiologia , Nanopartículas Metálicas/toxicidade , Reprodução/efeitos dos fármacos , Prata/química , Prata/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Escherichia coli/metabolismo , Doenças do Sistema Nervoso/induzido quimicamente , Concentração Osmolar , Espécies Reativas de Oxigênio/metabolismo , Prata/metabolismo
9.
J Environ Sci (China) ; 70: 133-143, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30037400

RESUMO

The Jialu River in China has been seriously polluted by the direct discharge of industrial and domestic wastewater. The predominant contaminants of the Jialu River and its adjacent groundwater were recently investigated. However, the potential genotoxic impact of polluted water on human health remains to be clarified. Here, we used human-hamster hybrid (AL) cells, which are sensitive for detecting environmental mutagens. We found that the cytotoxicity and mutagenicity of the groundwater in the Jialu River basin were influenced by the infiltration of the Jialu River. Hydrological periods significantly affected the cytotoxicity, but not the mutagenic potential, of surface and groundwater. Further, the mutagenic potential of groundwater samples located <1km from the Jialu River (SM-2 water samples) was detected earlier than that of groundwater samples located approximately 20km from the Jialu River (SN water samples). Because of high cytotoxicity, the mutagenic potential of water samples from the Jialu River (SM-1 water samples) was not significantly enhanced compared with that of untreated controls. To further assess the mutagenic dispersion potential, an artificial neural network model was adopted. The results showed that the highest mutagenic potential of groundwater was observed approximately 10km from the Jialu River. Although further investigation of mutagenic spatial dispersion is required, our data are significant for advancing our understanding of the origin, dispersion, and biological effects of water samples from polluted areas.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , China , Água Subterrânea/química , Humanos , Células Híbridas , Mutagênicos/análise , Mutagênicos/toxicidade , Rios/química , Poluentes Químicos da Água/análise
10.
J Nanosci Nanotechnol ; 16(4): 4205-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451788

RESUMO

Since discovery, graphene oxide (GO) has been used in all aspects of human life and revealed promising applications in biomedicine. Nevertheless, the potential risks of GO were always being revealed. Although GO was found to induce immune cell death and innate immune response, little is known regarding its toxicity to the specific adaptive immune system that is crucial for protecting against exotic invasion. The B-cell mediated adaptive immune system, which composed of highly specialized cells (B and plasma cell) and specific immune response (antibody response) is the focus in our present study. Using diverse standard immunological techniques, we found that GO modulated B cell surface phenotype, both costimulatory molecules (CD80, CD86 and especially CD40) and antigen presenting molecules (both classical and nonclassical) under the condition without causing cell death. Meanwhile, the terminal differentiated immunoglobulin (Ig) secreting plasma cell was affected by GO, which displayed a less secretion of Ig and more severe ER stress caused by the retention of the secreted form of Ig in cell compartment. The combined data reveal that GO has a particular adverse effect to B cell and the humoral immunity, directly demonstrating the potential risk of GO to the specific adaptive immunity.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Grafite/toxicidade , Imunoglobulina G/imunologia , Nanopartículas/toxicidade , Plasmócitos/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Imunoglobulina G/efeitos dos fármacos , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Óxidos/toxicidade , Plasmócitos/efeitos dos fármacos , Plasmócitos/patologia
11.
Toxicol Res (Camb) ; 13(2): tfae037, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500513

RESUMO

Background: Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods: 3D spheroids were exposed to 25-100 µg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-ß-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results: Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-ß-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-ß1/Smad3 axis and HMGB1 pathway. Conclusions: Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.

12.
Sci Total Environ ; 948: 174772, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39019263

RESUMO

Mounting evidence in animal experiments proves that early life stage exposure to organophosphate flame retardants (OPFRs) affects the locomotor behavior and changes the transcriptions of central nervous system genes. Unfortunately, their effect on human motor neuron (MN) development, which is necessary for body locomotion and survival, has not yet characterized. Here, we utilized a spinal cord MN differentiation model from human embryonic stem cells (ESCs) and adopted this model to test the effects of two typical OPFRs tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP), on MN development and the possible mechanisms underlying. Our findings revealed TBEP exerted a much more inhibitory effect on MN survival, while TCEP exhibited a stronger stimulatory effect on ESCs differentiation into MN, and thus TBEP exhibited a stronger inhibition on MN development than TCEP. RNA sequencing analysis identified TBEP and TCEP inhibited MN survival mainly by disrupting extracellular matrix (ECM)-receptor interaction. Focusing on the pathway guided MN differentiation, we found both TBEP and TCEP activated BMP signaling, whereas TCEP simultaneously downregulated Wnt signaling. Collectively, this is the first study demonstrated TBEP and TCEP disrupted human MN development by affecting their survival and differentiation, thereby raising concern about their potential harm in causing MN disorders.


Assuntos
Diferenciação Celular , Retardadores de Chama , Neurônios Motores , Organofosfatos , Retardadores de Chama/toxicidade , Humanos , Diferenciação Celular/efeitos dos fármacos , Organofosfatos/toxicidade , Neurônios Motores/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Sobrevivência Celular/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-37770150

RESUMO

Though telomeres play a crucial role in maintaining genomic stability in cancer cells and have emerged as attractive therapeutic targets in anticancer therapy, the relationship between telomere dysfunction and genomic instability induced by irradiation is still unclear. In this study, we identified that protection of telomeres 1 (POT1), a single-stranded DNA (ssDNA)-binding protein, was upregulated in γ-irradiated HeLa cells and in cancer patients who exhibit radiation tolerance. Knockdown of POT1 delayed the repair of radiation-induced telomeric DNA damage which was associated with enhanced H3K9 trimethylation and enhanced the radiosensitivity of HeLa cells. The depletion of POT1 also resulted in significant genomic instability, by showing a significant increase in end-to-end chromosomal fusions, and the formation of anaphase bridges and micronuclei. Furthermore, knockdown of POT1 disturbed telomerase recruitment to telomere, and POT1 could interact with phosphorylated ATM (p-ATM) and POT1 depletion decreased the levels of p-ATM induced by irradiation, suggesting that POT1 could regulate the telomerase recruitment to telomeres to repair irradiation-induced telomeric DNA damage of HeLa cells through interactions with p-ATM. The enhancement of radiosensitivity in cancer cells can be achieved through the combination of POT1 and telomerase inhibitors, presenting a potential approach for radiotherapy in cancer treatment.


Assuntos
Telomerase , Neoplasias do Colo do Útero , Humanos , Feminino , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Células HeLa , Telomerase/genética , Telômero/genética , Instabilidade Genômica , Dano ao DNA
14.
Environ Pollut ; 330: 121764, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142209

RESUMO

Exposure to air pollution has been proven to be associated with impaired fetal lung development. However, due to the lack of reliable human source models, it is still challenging to deeply understand the human fetal lung development under PM2.5 exposure. Here, we utilized human embryonic stem cell (hESC) line H9 to generate lung bud tip progenitor organoids (LPOs), a process that mimics early stages of fetal lung development including definitive endoderm (DE) formation, anterior foregut endoderm (AFE) differentiation and lung progenitor cell specification, to evaluate potential pulmonary developmental toxicity of PM2.5. We demonstrated that PM2.5 exposure the entire LPOs induction from hESCs significantly affected cellular proliferation of LPOs, and altered the expression of lung progenitor cell markers NKX2.1, SOX2 and SOX9, which are canonically defined subsequently proximal-distal airways specification. To explore the dynamic influences of PM2.5 exposure at different stages of LPOs specification, we also found that PM2.5 exposure significantly affected the expression of several transcriptional factors that are important for the differentiation of DE and AFE. Mechanistically, we suggested PM2.5-induced developmental toxicity to LPOs was partially linked with the Wnt/ß-catenin signaling pathway. Therefore, our findings further emphasize the substantial health risks in the development of respiratory system associated with prenatal exposure to PM2.5.


Assuntos
Pulmão , Organoides , Feminino , Humanos , Gravidez , Diferenciação Celular , Pulmão/metabolismo , Linhagem Celular , Material Particulado/toxicidade , Material Particulado/metabolismo
15.
ACS Synth Biol ; 12(3): 832-841, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36779413

RESUMO

Biosynthetic alkane using acyl-ACP aldehyde reductase (AAR) and aldehyde-deformylating oxygenase (ADO) from cyanobacteria is considered a promising alternative for the production of biofuels and chemical feedstocks. However, the lack of suitable screening methods to improve the catalytic efficiency of AAR and ADO has hindered further improvements in alkane production. Herein, a novel alkane biosensor was developed based on transcriptional factor AlkS by directed evolution, which shows sensitive dynamic response curves for exogenous long-chain alkanes as well as in situ monitoring of endogenously produced alkanes. The evolved biosensor enables high-throughput screening of alkane-producing strains from the AAR and ADO mutant library, which led to a 13-fold increase in the production of long-chain alkanes, including a 22-fold increase of C15. This study is the first to improve the alkane production through biosensors, which provides a good reference for the establishment of microbial cell factories for alkane production.


Assuntos
Técnicas Biossensoriais , Cianobactérias , Alcanos , Ensaios de Triagem em Larga Escala , Oxigenases , Cianobactérias/genética , Aldeídos
16.
Radiat Res ; 200(5): 474-488, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815204

RESUMO

Carbon-ion radiation therapy (CIRT) may offer remarkable advantages in cancer treatment with its unique physical and biological characteristics. However, the underlying epigenetic regulatory mechanisms of cancer response to CIRT remain to be identified. In this study, we showed consistent but different degrees of biological effects induced in NSCLC A549 cells by carbon ions of different LET. The genome-wide chromatin accessibility and transcriptional profiles of carbon ion-treated A549 cells were performed using transposase-accessible chromatin sequencing (ATAC-seq) and RNA-seq, respectively, and further gene regulatory network analysis was performed by integrating the two sets of genomic data. Alterations in chromatin accessibility by carbon ions of different LET predominantly occurred in intron, distal intergenic and promoter regions of differential chromatin accessibility regions. The transcriptional changes were mainly regulated by proximal chromatin accessibility. Notably, CCCTC-binding factor (CTCF) was identified as a key transcription factor in the cellular response to carbon ions. The target genes regulated by CTCF in response to carbon ions were found to be closely associated with the LET of carbon ions, particularly in the regulation of gene transcription within the DNA replication- and metabolism-related signaling pathways. This study provides a regulatory profile of genes involved in key signaling pathways and highlighted key regulatory elements in NSCLC A549 cells during CIRT, which expands our understanding of the epigenetic mechanisms of carbon ion-induced biological effects and reveals an important role for LET in the regulation of changes in chromatin accessibility, although further research is needed.


Assuntos
Cromatina , Fatores de Transcrição , Humanos , Cromatina/genética , Células A549 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes
17.
Cell Death Dis ; 14(12): 817, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086789

RESUMO

Chromatin accessibility is a critical determinant of gene transcriptional expression and regulated by histones modification. However, the potential for manipulating chromatin accessibility to regulate radiation sensitivity remains unclear. Our findings demonstrated that the histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), could enhance the radiosensitivity of non-small cell lung cancer (NSCLC) in vitro and in vivo. Mechanistically, IOX1 treatment reduced chromatin accessibility in the promoter region of DNA damage repair genes, leading to decreased DNA repair efficiency and elevated DNA damage induced by γ irradiation. Notably, IOX1 treatment significantly reduced both chromatin accessibility and the transcription of phytochrome interacting factor 1 (PIF1), a key player in telomere maintenance. Inhibition of PIF1 delayed radiation-induced DNA and telomeric DNA damage repair, as well as increased radiosensitivity of NSCLC in vitro and in vivo. Further study indicated that the above process was regulated by a reduction of transcription factor myc-associated zinc finger protein (MAZ) binding to the distal intergenic region of the PIF1. Taken together, IOX1-mediated demethylase inactivation reduced chromatin accessibility, leading to elevated telomere damage which is partly due to PIF1 inhibition, thereby enhancing NSCLC radiosensitivity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fitocromo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Cromatina , Histonas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Fitocromo/genética , Fitocromo/metabolismo , Tolerância a Radiação/genética , DNA Helicases/metabolismo
18.
Toxicol Lett ; 373: 94-104, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435412

RESUMO

Microcystin-LR (MC-LR) has been recognized as a typical hepatotoxic cyclic peptides produced by cyanobacteria. Nowadays, due to the frequent occurrence of cyanobacterial blooms, the underlying hepatotoxic mechanism of MC-LR has become the focus of attention. In our present work, the mutagenic effect of MC-LR on human normal hepatic (HL-7702) cells regulated by cGAS was mainly studied. Here, we showed that exposure to MC-LR for 1-4 days could activate the cGAS-STING signaling pathway and then trigger immune response in HL-7702 cells. Notably, relative to the treatment with 1 µM MC-LR for 1-3 days, it was observed that when HL-7702 cells were exposed to 1 µM MC-LR for 4 days, the mutation frequency at the Hprt locus was remarkably increased. In addition, cGAS in HL-7702 cells was also found to complete the nuclear translocation after 4-day exposure. Moreover, co-immunoprecipitation and homologous recombination (HR)-directed DSB repair assay were applied to show that homologous recombination repair was inhibited after 4-day exposure. However, the intervention of the nuclear translocation of cGAS by transfecting BLK overexpression plasmid restored homologous recombination repair and reduced the mutation frequency at the Hprt locus in HL-7702 cells exposed to MC-LR. Our study unveiled the distinct roles of cGAS in the cytoplasm and nucleus of human hepatocytes as well as potential mutagenic mechanism under the early and late stage of exposure to MC-LR, and provided a novel insight into the prevention and control measures about the hazards of cGAS-targeted MC-LR.


Assuntos
Cianobactérias , Reparo de DNA por Recombinação , Humanos , Hipoxantina Fosforribosiltransferase/farmacologia , Microcistinas/toxicidade , Hepatócitos , Nucleotidiltransferases/farmacologia , Mutagênese
19.
J Hazard Mater ; 460: 132311, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633019

RESUMO

Antibiotic abuse is the main reason for the drug resistance of pathogenic bacteria, posing a potential health risk. Antibiotic surveillance is critical for preventing antibiotic contamination. This study aimed to develop a sensitive and broad-spectrum whole-cell biosensor for tetracycline antibiotics (TCs) detection. Wild-type TCs-responsive biosensor was constructed by introducing a tetracycline operon into a sfGFP reporter plasmid. Using error-prone PCR, mutation libraries containing approximately 107 variants of the tetracycline repressor (TetR) gene were generated. The tigecycline-senstive mutants were isolated using high-throughput flow cytometric sorting. After 2 rounds of directed evolution, a mutant epS2-22 of TerR was isolated and assembled as a TCs biosensor. The epS2-22 biosensor was more sensitive and broad-spectrum than the wild-type biosensors. The detection limits of the epS2-22 biosensor for seven TCs were 4- to 62-fold lower than the wild-type biosensor (no response to tigecycline). Meanwhile, the epS2-22 biosensor had a shorter detection time and a stronger signal output than the wild type. In addition, the evolved epS2-22 biosensor showed excellent performance in detecting low traces of TCs in environmental water. These results suggest that directed evolution is a powerful tool for developing high-performance whole-cell biosensors, and the evolved epS2-22 biosensors have the potential for wider applications in real-world TCs detection.


Assuntos
Antibacterianos , Tetraciclina , Tigeciclina , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Movimento Celular , Contaminação de Medicamentos , Fatores de Transcrição
20.
Radiat Res ; 200(3): 281-288, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450610

RESUMO

Connexin26 (Cx26) plays an important role in ionizing radiation-induced damage, and CC chemokine ligand 27 (CCL27) regulates the skin immune response. However, the relationship between Cx26 and CCL27 in radiation-induced skin damage is unclear. After X-ray irradiation, clonogenic survival and micronucleus formation were assessed in immortalized human keratinocytes (HaCaT). Proteins in the mitogen activated protein kinase (MAPK) signaling pathway and CCL27-related proteins were detected by immunoblotting. HaCaTCx26-/- cells were constructed to verify the effects of Cx26 on CCL27 secretion. A mouse model was established to examine the expression of CCL27 and skin inflammation in vivo. The degree of skin injury induced by 6 MV of X rays was closely related to CCL27. The phosphorylation of ERK, p38 and NF-κB was significantly increased in irradiated cells. The secretion of CCL27 was significantly decreased in HaCaT wild-type cells relative to HaCaTCx26-/- cells. Whereas cell survival fractions decreased, and the micronuclei formation rate increased as a function of increasing X-ray dose in HaCaT cells, the opposite trend occurred in HaCaTCx26-/- cells. Our findings show that Cx26 likely plays a role in the activation of the MAPK and NF-κB/COX-2 signaling pathways and regulates the secretion of CCL27 in keratinocytes after X-ray radiation-induced skin damage.


Assuntos
Quimiocina CCL27 , Radiodermite , Animais , Humanos , Camundongos , Quimiocina CCL27/metabolismo , Quimiocina CCL27/farmacologia , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Queratinócitos/metabolismo , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , NF-kappa B/metabolismo , Radiodermite/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA