Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(9): 6140-6149, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33797225

RESUMO

Organochlorine pesticides (OCPs) have been used worldwide on an enormous scale over the last century but are banned globally due to environmental persistence and ecotoxicity in recent decades. The long-term effects of OCP ban for agricultural use in China since 1983 on the reproductive health of small terrestrial mammals have never been evaluated in the field. We examined the residue dynamics of OCPs and the reproductive performance of Chinese striped hamsters (Cricetulus barabensis) in North China Plain during 1983-2010 and concluded that the exposure levels of OCPs in hamsters drastically decreased from 2900 ± 740 to 25.2 ± 6.88 ng/g with an average half-life of 5.08 yrs, coinciding with the observed reproductive recovery of hamsters. The population-based reproductive performance of hamsters was significantly and negatively associated with OCP exposure levels after adjusting the contributions from climate and population density factors, indicating that the ban of OCPs has facilitated the reproductive recovery of hamsters by up to 81% contribution. Our findings suggest that the OCP ban is effective to restore reproduction of small terrestrial mammals. Integration of population biology and environmental science is essential to assess the impacts of persistent organic pollutants on ecological safety and biodiversity loss under accelerated global change.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Animais , China , Cricetinae , Cricetulus , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Reprodução
2.
J Anim Ecol ; 82(2): 334-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23030597

RESUMO

Several studies show that climatic (extrinsic) factors can interact with density-dependent (intrinsic) factors to alter long-term population dynamics, yet there is a surprising lack of investigations of how anthropogenic disturbance modifies such dynamics. Such interactions could be especially important in agricultural systems subject to climate change. We investigated the effects of density dependence, climate, recurrent disturbance from flood irrigation and their interactions on the population dynamics of an important rodent pest, the Chinese striped hamster (Cricetulus barabensis), over 27 years in the croplands of the North China Plain. Strong density-dependent feedbacks occurred at both annual and seasonal scales. While warmer weather increased population sizes in nonbreeding seasons, this effect was counteracted by the negative effect of flood irrigation in breeding seasons. Precipitation showed significant positive effects in nonbreeding seasons, but negative effects in breeding seasons. There were important interactions between intrinsic dynamics, extrinsic dynamics and disturbance. Low temperature significantly increased the strength of density dependence in nonbreeding seasons, whereas intensification of flood irrigation area significantly increased the strength of density dependence but reduced the effect of summer precipitation in breeding seasons. Overall climate change is expected to increase population levels, but anthropogenic disturbance from flood irrigation will help prevent long-term population increases. The interactions between anthropogenic disturbance and both intrinsic and extrinsic (weather-driven) population dynamics caution that we need to consider anthropogenic disturbance as an integral component of population responses to climate change.


Assuntos
Irrigação Agrícola , Cricetulus/fisiologia , Animais , Clima , Modelos Biológicos , Dinâmica Populacional , Estações do Ano
3.
PLoS One ; 8(1): e54171, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349815

RESUMO

Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.


Assuntos
Cricetinae/genética , Variação Genética , Repetições de Microssatélites/genética , Estações do Ano , Animais , China , Cricetinae/crescimento & desenvolvimento , Fluxo Gênico , Deriva Genética , Genótipo , Geografia , Endogamia , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA