Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Annu Rev Physiol ; 83: 551-576, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33566674

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by impaired regulation of pulmonary hemodynamics and vascular growth. Alterations of metabolism and bioenergetics are increasingly recognized as universal hallmarks of PAH, as metabolic abnormalities are identified in lungs and hearts of patients, animal models of the disease, and cells derived from lungs of patients. Mitochondria are the primary organelle critically mediating the complex and integrative metabolic pathways in bioenergetics, biosynthetic pathways, and cell signaling. Here, we review the alterations in metabolic pathways that are linked to the pathologic vascular phenotype of PAH, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, arginine metabolism, one-carbon metabolism, the reducing and oxidizing cell environment, and the tricarboxylic acid cycle, as well as the effects of PAH-associated nuclear and mitochondrial mutations on metabolism. Understanding of the metabolic mechanisms underlying PAH provides important knowledge for the design of new therapeutics for treatment of patients.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Redes e Vias Metabólicas/fisiologia , Animais , Glicólise/fisiologia , Humanos , Mitocôndrias/metabolismo
2.
Am J Hematol ; 98(2): 251-263, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309982

RESUMO

1q gain (+1q) is the most common high-risk cytogenetic abnormality (HRCA) in patients with multiple myeloma (MM). However, its prognostic value remains unclear in the era of novel agents. Here, we retrospectively analyzed the impact of +1q on the outcomes of 934 patients newly diagnosed with MM. +1q was identified in 53.1% of patients and verified as an independent variate for inferior overall survival (OS) (hazard ratio, 1.400; 95% confidence interval, 1.097-1.787; p = .007). Concurrence of other HRCAs (particularly t(14;16) and del(17p)) further exacerbated the outcomes of patients with +1q, suggesting prognostic heterogeneity. Thus, a risk-scoring algorithm based on four risk variates (t(14;16), hypercalcemia, ISS III, and high LDH) was developed to estimate the outcomes of patients with +1q. Of the patients, 376 evaluable patients with +1q were re-stratified into low (31.6%), intermediate (61.7%), and high risk (6.7%) groups, with significantly different progression-free survival and OS (p < .0001), in association with early relapse of the disease. The prognostic value of this model was validated in the CoMMpass cohort. While attaining undetectable MRD largely circumvented the adverse impact of +1q, it scarcely ameliorated the outcome of the patients with high risk, who likely represent a subset of patients with extremely poor survival. Hence, patients with +1q are a heterogeneous group of high-risk patients, therefore underlining the necessity for their re-stratification. The proposed simple risk-scoring model can estimate the outcomes of patients with +1q, which may help guide risk-adapted treatment for such patients.


Assuntos
Mieloma Múltiplo , Humanos , Prognóstico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Estudos Retrospectivos , Aberrações Cromossômicas , Modelos de Riscos Proporcionais
3.
Proc Natl Acad Sci U S A ; 117(4): 2187-2193, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932420

RESUMO

Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3ß-hydroxysteroid dehydrogenase-1 (3ß-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3ß-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention.


Assuntos
Asma/tratamento farmacológico , Asma/enzimologia , Glucocorticoides/administração & dosagem , Complexos Multienzimáticos/genética , Progesterona Redutase/genética , Esteroide Isomerases/genética , Adulto , Idoso , Alelos , Androgênios/metabolismo , Asma/genética , Asma/metabolismo , Estudos de Coortes , Resistência a Medicamentos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Esteroide Isomerases/metabolismo , Adulto Jovem
4.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L548-L557, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126269

RESUMO

Asthma is an inflammatory disease of the airways characterized by eosinophil recruitment, eosinophil peroxidase release, and protein oxidation through bromination, which following tissue remodeling results in excretion of 3-bromotyrosine. Predicting exacerbations and reducing their frequency is critical for the treatment of severe asthma. In this study, we aimed to investigate whether urinary total conjugated bromotyrosine can discriminate asthma severity and predict asthma exacerbations. We collected urine from participants with severe (n = 253) and nonsevere (n = 178) asthma, and the number of adjudicated exacerbations in 1-yr longitudinal follow-up was determined among subjects enrolled in the Severe Asthma Research Program, a large-scale National Institutes of Health (NIH)-funded consortium. Urine glucuronidated bromotyrosine and total conjugated forms were quantified by hydrolysis with either glucuronidase or methanesulfonic acid, respectively, followed by liquid chromatography-tandem mass spectrometry analyses of free 3-bromotyrosine. Blood and sputum eosinophils were also counted. The majority of 3-bromotyrosine in urine was found to exist in conjugated forms, with glucuronidated bromotyrosine representing approximately a third, and free bromotyrosine less than 1% of total conjugated bromotyrosine. Total conjugated bromotyrosine was poorly correlated with blood (r2 = 0.038) or sputum eosinophils (r2 = 0.0069). Compared with participants with nonsevere asthma, participants with severe asthma had significantly higher urinary total conjugated bromotyrosine levels. Urinary total conjugated bromotyrosine was independently associated with asthma severity, correlated with the number of asthma exacerbations, and served as a predictor of asthma exacerbation risk over 1-yr of follow-up.


Assuntos
Asma , Eosinófilos , Humanos , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Asma/diagnóstico , Asma/metabolismo , Escarro/metabolismo , Contagem de Leucócitos , Glucuronidase/metabolismo
5.
BMC Gastroenterol ; 21(1): 148, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794795

RESUMO

BACKGROUND: Antiphospholipid syndrome (APS) is an acquired pre-thrombotic autoimmune condition, which produces autoantibodies called antiphospholipid antibodies (APL) against phospholipid-binding plasma proteins. The diagnosis of APS requires at least one of Sapporo standard clinical manifestations and one laboratory criteria (persistently medium/high titer anticardiolipin antibodies, and/or medium/high titer anti-ß2-glycoprotein I antibodies, and/or a positive lupus anticoagulant test). Gastrointestinal lesions are rarely reported in APS patients. APS cases with recurrent abdominal pain as the first clinical manifestation are even rarer. CASE PRESENTATION: This report describes an APS case with recurrent abdominal pain as the first clinical manifestation of antiphospholipid syndrome. The patient has a history of two miscarriages. Computed tomography of the abdomen confirmed mesenteric thrombosis and intestinal obstruction while laboratory tests for serum antiphospholipid and anti-ß2-glycoprotein I antibodies were positive. This led to the diagnosis of APS. CONCLUSIONS: This paper provides useful information on gastrointestinal manifestations and APS, also including a brief literature review about possible gastrointestinal symptoms of APS.


Assuntos
Síndrome Antifosfolipídica , Trombose , Anticorpos Anticardiolipina , Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Autoanticorpos , Humanos , Trombose/etiologia
6.
IUBMB Life ; 71(9): 1355-1366, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034758

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain, stiffness, and function degeneration with high incidence. Recent studies have been inspired based on the association between microRNAs (miRs) and therapeutic research of OA. Hence, the present study evaluates the effects of miR-138 on chondrocyte proliferation, differentiation, and apoptosis through the WNT/ß-catenin signaling pathway in mice with OA by binding to NIMA-related kinase 2 (NEK2). Appropriate dataset was selected from the Gene Expression Omnibus database, and differentially expressed genes and potential miRNAs that could regulate NEK2 were explored. A mouse model of OA was established. The expressions of miR-138, NEK2, ß-catenin, GSK3ß, Bcl-2, Bcl-2-associated X protein (Bax), p53, MMP-13, Col2, and Aggrecan and the phosphorylation levels of ß-catenin were determined by the reverse transcription quantitative polymerase chain reaction and Western blot analysis. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry were employed to detect cell proliferation and apoptosis, respectively. The potential functional role of NEK2 was revealed to be related to the WNT/ß-catenin signaling pathway, and miR-138 was the putative regulator of NEK2. miR-138 expression was downregulated while expressions of NEK2 and ß-catenin as well as the phosphorylation levels of ß-catenin were upregulated in mice with OA. The chondrocytes treated with miR-138 mimic and siRNA-NEK2 exhibited reduced expressions of NEK2, ß-catenin, MMP-13, Bax, and p53 and elevated expressions of Col2, Aggrecan, and Bcl-2 as well as phosphorylation levels of ß-catenin along with enhanced chondrocytes' proliferation and suppressed cell apoptosis. Overexpression of miR-138 induces cell survival and reduces WNT/ß-catenin signaling of OA chondrocytes through NEK2. © 2019 IUBMB Life, 71(9):1355-1366, 2019.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Quinases Relacionadas a NIMA/genética , Osteoartrite/genética , Animais , Apoptose/genética , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Osteoartrite/patologia , Via de Sinalização Wnt/genética
10.
Biotechnol Lett ; 39(9): 1359-1367, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28593479

RESUMO

OBJECTIVES: To investigate the roles of Dead end 1 (Dnd1) in modulating cancer stem cell-related traits of hepatocellular carcinoma (HCC). RESULTS: Dead end (Dnd1) inhibited spheroid formation, suppressed the expression of stemness-related genes, and increased sensitivity to sorafenib in HCC cells. Mechanistically, Dnd1 could bind to 3'-UTR of LATS2, the key kinase of Hippo pathway, thus elevating LATS2 mRNA stability and its expression, subsequently leading to phosphorylation of YAP and its cytoplasmic retention. As a result, epithelial-mesenchymal transition (EMT) was weakened and therefore the generation of HCC stem cell properties was suppressed. CONCLUSIONS: Dnd1 functions as a tumor suppressor by prohibiting CSC-like characteristics via activating Hippo pathway in HCC cells. Dnd1 could thus be a novel therapeutic target for HCC patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Estabilidade de RNA , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP
11.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1199-205, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27130529

RESUMO

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by ß-blocker also restored NO formation by PAH cells, identifying one mechanism by which ß-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.


Assuntos
Células Endoteliais/enzimologia , Hipertensão Pulmonar/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Adulto , Células Cultivadas , Feminino , Humanos , Hipertensão Pulmonar/patologia , Pulmão/enzimologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/biossíntese , Fosforilação , Proteína Quinase C/metabolismo
12.
J Immunol ; 190(7): 3458-65, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427249

RESUMO

Asthma airway remodeling is linked to Th2 inflammation. Angiogenesis is a consistent feature of airway remodeling, but its contribution to pathophysiology remains unclear. We hypothesized that nascent endothelial cells in newly forming vessels are sufficient to initiate Th2-inflammation. Vascular endothelial (VE)-cadherin is a constitutively expressed endothelial cell adhesion molecule that is exposed in its monomer form on endothelial tip cells prior to adherens junction formation. Abs targeted to VE-cadherin monomers inhibit angiogenesis by blocking this adherens junction formation. In this study, VE-cadherin monomer Ab reduced angiogenesis in the lungs of the allergen-induced murine asthma model. Strikingly, Th2 responses including, IgE production, eosinophil infiltration of the airway, subepithelial fibrosis, mucus metaplasia, and airway-hyperreactivity were also attenuated by VE-cadherin blockade, via mechanisms that blunted endothelial IL-25 and proangiogenic progenitor cell thymic stromal lymphopoietin production. The results identify angiogenic responses in the origins of atopic inflammation.


Assuntos
Asma/imunologia , Endotélio/imunologia , Células Th2/imunologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/imunologia , Alérgenos/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD , Asma/metabolismo , Células da Medula Óssea/imunologia , Caderinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Imunoglobulina E/imunologia , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Fator de Transcrição STAT6/metabolismo , Células Th2/metabolismo , Linfopoietina do Estroma do Timo
13.
MethodsX ; 12: 102497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38089156

RESUMO

Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines that are depleted of mitochondrial DNA. One week of ethidium bromide (EtBr) treatment led to ∼95 % reduction of mtDNA copy number (mtDNA-CN) in cells, which was further reduced by addition of 25 µM 2',3'-dideoxycytidin (ddC). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA. The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ∼two-fold in cells when mtDNA was eliminated. BET-1A ρ0 and BEAS-2B ρ0 cells were cultured for two months, frozen and thawed, cultured for two more months, and maintained near zero mtDNA-CN. Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis.•BET-1A and BEAS-2B cells were treated with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA).•Cells' mtDNA copy number relative to nuclear DNA (nDNA) were verified by quantitative polymerase chain reaction (qPCR).•Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer.

14.
J Hematol Oncol ; 17(1): 48, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915117

RESUMO

It remains a substantial challenge to balance treatment efficacy and toxicity in geriatric patients with multiple myeloma (MM), primarily due to the dynamic nature of frailty. Here, we conducted a prospective study to evaluate the feasibility and benefits of dynamic frailty-tailored therapy (DynaFiT) in elderly patients. Patients with newly diagnosed MM (aged ≥ 65 years) received eight induction cycles of bortezomib, lenalidomide, and dexamethasone (daratumumab was recommended for frail patients), with treatment intensity adjusted according to longitudinal changes in the frailty category (IMWG-FI) at each cycle. Of 90 patients, 33 (37%), 16 (18%), and 41 (45%) were fit, intermediate fit, and frail at baseline, respectively. Of 75 patients who had geriatric assessment at least twice, 28 (37%) experienced frailty category changes at least once. At analysis, 15/26 (58%) frail patients improved (27% became fit and 31% became intermediate fit), 4/15 (27%) intermediate fit patients either improved or deteriorated (two for each), and 6/30 (20%) fit patients deteriorated. During induction, 34/90 (38%) patients discontinued treatment, including 10/33 (30%) fit, 4/16 (25%) intermediate fit, and 20/41 (49%) frail; 14/40 (35%) frail patients discontinued treatment within the first two cycles, mainly because of non-hematologic toxicity (mostly infections). For fit, intermediate-fit, and frail patients, the overall response rate was 100%, 93%, and 73%, respectively; one-year overall survival was 90%, 75%, and 54%, respectively. Therefore, the individualized DynaFiT is feasible and promising for heterogeneous elderly patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona , Fragilidade , Lenalidomida , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Idoso , Estudos Prospectivos , Masculino , Feminino , Idoso de 80 Anos ou mais , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Lenalidomida/uso terapêutico , Lenalidomida/administração & dosagem , Bortezomib/uso terapêutico , Bortezomib/administração & dosagem , Medicina de Precisão/métodos , Idoso Fragilizado , Avaliação Geriátrica/métodos , Anticorpos Monoclonais
15.
Blood ; 117(13): 3485-93, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21258008

RESUMO

Pulmonary arterial hypertension (PAH) is a proliferative vasculopathy characterized by high circulating CD34(+)CD133(+) proangiogenic progenitors, and endothelial cells that have pathologic expression of hypoxia-inducible factor 1 α (HIF-1α). Here, CD34(+)CD133(+) progenitor cell numbers are shown to be higher in PAH bone marrow, blood, and pulmonary arteries than in healthy controls. The HIF-inducible myeloid-activating factors erythropoietin, stem cell factor (SCF), and hepatocyte growth factor (HGF) are also present at higher than normal levels in PAH blood, and related to disease severity. Primary endothelial cells harvested from human PAH lungs produce greater HGF and progenitor recruitment factor stromal-derived factor 1 α (SDF-1α) than control lung endothelial cells, and thus may contribute to bone marrow activation. Even though PAH patients had normal numbers of circulating blood elements, hematopoietic alterations in myeloid and erythroid lineages and reticulin fibrosis identified a subclinical myeloproliferative process. Unexpectedly, evaluation of bone marrow progenitors and reticulin in nonaffected family members of patients with familial PAH revealed similar myeloid abnormalities. Altogether, the results show that PAH is linked to myeloid abnormalities, some of which may be related to increased production of HIF-inducible factors by diseased pulmonary vasculature, but findings in nonaffected family suggest myeloid abnormalities may be intrinsic to the disease process.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Doenças da Medula Óssea/etiologia , Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/metabolismo , Antígeno AC133 , Adulto , Antígenos CD/sangue , Antígenos CD/metabolismo , Antígenos CD34/sangue , Antígenos CD34/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças da Medula Óssea/metabolismo , Doenças da Medula Óssea/patologia , Contagem de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Feminino , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/sangue , Hipóxia/complicações , Hipóxia/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Células Mieloides/patologia , Peptídeos/sangue , Peptídeos/metabolismo , Regulação para Cima/fisiologia
16.
Appl Microbiol Biotechnol ; 97(1): 171-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22322871

RESUMO

A chitosan plate assay was employed to screen for chitosanase-producing bacterial strains and isolate 141 was found to exhibit high activity. Characterization of this isolate revealed that it belonged to Mitsuaria (designated as Mitsuaria sp. 141). The encoded chitosanase (choA) gene was then cloned by PCR and the deduced amino acid sequence showed 98% identity to a formerly described Mitsuaria chitosanitabida 3001 ChoA (McChoA). Surprisingly, the ChoA encoded by Mitsuaria sp. 141 (MsChoA) appeared to have a much higher optimum temperature compared to McChoA. Site-directed mutagenesis was then employed to generate five MschoA mutant genes encoding MsChoA K204Q, R216K, T222N, R216K/T222N, or K204Q/R216K/T222N. All the ChoA mutants exhibited a much lower specific activity and a lower optimum temperature. The results confirmed that the substitution of three non-conserved amino acids accounts for the major reduction of the enzyme activity in MsChoA. Furthermore, the MschoA gene was cloned for over-expression in Pichia pastoris after coding sequence optimization. One of the P. pastoris transformants with Mut(S) phenotype was found to produce 1,480.2 ± 340.9 U ChoA mL(-1) of cell culture by high-cell-density fermentation. This represents the highest yield of recombinant ChoA production that has ever been reported thus far. The recombinant P. pastoris strain should therefore be well suited for industrial-scale production of chitosanase.


Assuntos
Aminoácidos/genética , Betaproteobacteria/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Pichia/genética , Betaproteobacteria/genética , Quitosana/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura
17.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546956

RESUMO

Introduction: Mitochondria are increasingly recognized to play a role in the airway inflammation of asthma. Model systems to study the role of mitochondrial gene expression in bronchial epithelium are lacking. Here, we create custom bronchial epithelial cell lines derived from primary airway epithelium that are depleted of mitochondrial DNA. Methods: We treated BET-1A and BEAS-2B cells with ethidium bromide (EtBr) with or without 2',3'-dideoxycytidine (ddC) to create cells lacking mitochondrial DNA (mtDNA). Cells' mtDNA copy number were verified by quantitative polymerase chain reaction (qPCR) in comparison to nuclear DNA (nDNA). Cells were also assessed for oxidative phosphorylation by measures of oxygen consumption using the Seahorse analyzer. Results: One week of EtBr treatment led to ~95% reduction of mtDNA copy number (mtDNA-CN) in cells (mtDNA-CN, mean±SE, baseline vs. treatment: BEAS-2B, 820 ± 62 vs. 56 ± 9; BET-1A, 957 ± 52 vs. 73 ± 2), which was further reduced by addition of 25 µM ddC (mtDNA-CN: BEAS-2B, 2.8; BET-1A, 47.9). Treatment for up to three weeks with EtBr and ddC led to near complete loss of mtDNA (mtDNA-CN: BEAS-2B, 0.1; BET-1A, 0.3). The basal oxygen consumption rate (OCR) of mtDNA-depleted BET-1A and BEAS-2B cells dropped to near zero. Glycolysis measured by extracellular acidification rate (ECAR) increased ~two-fold in cells when mtDNA was eliminated [ECAR (mpH/min/103 cells), baseline vs. treatment: BEAS-2B, 0.50 ± 0.03 vs. 0.94 ± 0.10 P=0.005; BET-1A, 0.80 ± 0.04 vs. 1.14 ± 0.06 P=0.001]. Conclusion: Mitochondrial DNA-depleted BET-1A ρ0 and BEAS-2B ρ0 cell lines are viable, lack the capacity for aerobic respiration, and increase glycolysis. This cell model system can be used to further test mitochondrial mechanisms of inflammation in bronchial epithelial cells.

18.
medRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106101

RESUMO

Rationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.

19.
Am J Respir Cell Mol Biol ; 46(6): 723-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22427538

RESUMO

Pulmonary endothelial functions are critical to maintain the low pressure of the pulmonary circulation and effective diffusion capacity of the lung. To investigate pulmonary endothelial cell biology in healthy or diseased lungs, we developed methods to harvest and culture pure populations of primary pulmonary arterial endothelial cells and microvascular endothelial cells from human lung explanted at time of transplantation or from donor lungs not used in transplantation. The purity and characteristics of cultured endothelial cells is ascertained by morphologic criteria using phase contrast and electron microscopy; phenotypic expression profile for endothelial specific proteins such as endothelial nitric oxide synthase, platelet/endothelial cell adhesion molecule, and von Willbrand factor; and endothelial function assays such as Dil-acetylated low-density lipoprotein uptake and tube formation. This detailed method provides researchers with the ability to establish cells for molecular, genetic, and biochemical investigation of human pulmonary vascular diseases.


Assuntos
Endotélio Vascular/citologia , Pulmão/citologia , Artéria Pulmonar/citologia , Animais , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica , Suínos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121245, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35439672

RESUMO

A colorimetric and fluorescent chemosensor (CS1) for Cu2+ based on the mechanism of internal charge transfer (ICT) has been successfully designed and prepared by simple condensation of 4_(diethylamino)salicylaldehyde and oxalyl dihydrazide. Cu2+ in solution (DMSO/H2O = 7:3, v/v) by 5 mM NaAc-HAc at pH 7.0 was determined through dual channels: (1) "naked-eye" observation, a visually dramatic color change from light green to orange, which can be used for qualitative determination of Cu2+; (2) spectrofluorometry, which can quantificationally assay Cu2+. It provides a simple-to-use platform for reliable detection of Cu2+ at concentrations ranging from 5.0 × 10-7 to 1.1 × 10-5 M with detection limit of 1.2 × 10-7 M, which is nearly 2 × 102 times lower than the maximum allowable level of inorganic Cu2+ in drinking water (1.3 ppm, ∼20 µM) permitted by the EPA (Environmental Protection Agency), and the sensing detection of Cu2+ ions was reversible.


Assuntos
Colorimetria , Corantes Fluorescentes , Cobre , Íons , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA