Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2216206120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307441

RESUMO

Recurrent miscarriage (RM) is a distressing pregnancy complication. While the etiology of RM remains unclear, growing evidence has indicated the relevance of trophoblast impairment to the pathogenesis of RM. PR-SET7 is the sole enzyme catalyzing monomethylation of H4K20 (H4K20me1) and has been implicated in many pathophysiological processes. However, how PR-SET7 functions in trophoblasts and its relevance to RM remain unknown. Here, we found that trophoblast-specific loss of Pr-set7 in mice led to defective trophoblasts, resulting in early embryonic loss. Mechanistic analysis revealed that PR-SET7 deficiency in trophoblasts derepressed endogenous retroviruses (ERVs), leading to double-stranded RNA stress and subsequent viral mimicry, which drove overwhelming interferon response and necroptosis. Further examination discovered that H4K20me1 and H4K20me3 mediated the inhibition of cell-intrinsic expression of ERVs. Importantly, dysregulation of PR-SET7 expression and the corresponding aberrant epigenetic modifications were observed in the placentas of RM. Collectively, our results demonstrate that PR-SET7 acts as an epigenetic transcriptional modulator essential for repressing ERVs in trophoblasts, ensuring normal pregnancy and fetal survival, which sheds new light on potential epigenetic causes contributing to RM.


Assuntos
Aborto Habitual , Retrovirus Endógenos , Feminino , Gravidez , Humanos , Animais , Camundongos , Trofoblastos , Necroptose , Placenta
2.
Plant J ; 117(4): 979-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102881

RESUMO

Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.


Assuntos
Morte Celular Autofágica , Lotus , Flores/genética , Fosfatidilinositol 3-Quinases , Transdução de Sinais
3.
Mol Ther ; 32(2): 490-502, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38098228

RESUMO

Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.


Assuntos
Neoplasias , Linfócitos T , Humanos , Superantígenos/uso terapêutico , Antígenos de Neoplasias , Morte Celular
4.
Drug Resist Updat ; 77: 101137, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39178714

RESUMO

AIMS: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP), coharboring hypervirulence and carbapenem-resistance genes mediated by plasmids, causes infections with extremely high mortality and seriously impacts public health. Exploring the transfer mechanisms of virulence/carbapenem-resistance plasmids, as well as the formation and evolution pathway of hv-CRKP is of great significance to the control of hv-CRKP infections. METHODS: In this study, we identified the predominant clone of hv-CRKP in China and elucidated its genomic characteristics and formation route based on 239 multicenter clinical K. pneumoniae isolates and 1014 GenBank genomes by using comparative genomic analysis. Further, we revealed the factors affecting the transfer of virulence plasmids, and explained the genetic foundation for the prevalence of Chinese predominant hv-CRKP clone. RESULTS: ST11-KL64 is the predominant clone of hv-CRKP in China and primarily evolved from ST11-KL64 CRKP by acquiring the pLVPK-like virulence plasmid from hvKP. Significantly, the virulence gene cluster iroBCDN was lost in the virulence plasmid of ST11-KL64 hv-CRKP but existed in that of hvKP. Moreover, the absence of iroBCDN didn't decrease the virulence of hv-CRKP, which was proved by bacterial test, cell-interaction test and mice infection model. On the contrary, loss of iroBCDN was observed to regulate virulence/carbapenem-resistance plasmid transfer and oxidative stress-related genes in strains and thus promoted the mobilization of nonconjugative virulence plasmid from hvKP into ST11-KL64 CRKP, forming hv-CRKP which finally had elevated antioxidant capacity and enhanced survival capacity in macrophages. The loss of iroBCDN increased the survival ability of hv-CRKP without decreasing its virulence, endowing it with an evolutionary advantage. CONCLUSIONS: Our work provides new insights into the key role of iroBCDN loss in convergence of CRKP and hvKP, and the genetic and biological foundation for the widespread prevalence of ST11-KL64 hv-CRKP in China.

5.
BMC Genomics ; 25(1): 648, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943098

RESUMO

BACKGROUND: Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS: In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS: These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Nelumbo , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nelumbo/genética , Dedos de Zinco CYS2-HIS2/genética , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Genoma de Planta , Perfilação da Expressão Gênica
6.
Antimicrob Agents Chemother ; 68(2): e0093723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169282

RESUMO

Entering a dormant state is a prevailing mechanism used by bacterial cells to transiently evade antibiotic attacks and become persisters. The dynamic progression of bacterial dormancy depths driven by protein aggregation has been found to be critical for antibiotic persistence in recent years. However, our current understanding of the endogenous genes that affects dormancy depth remains limited. Here, we discovered a novel role of phage shock protein A (pspA) gene in modulating bacterial dormancy depth. Deletion of pspA of Escherichia coli resulted in increased bacterial dormancy depths and prolonged lag times for resuscitation during the stationary phase. ∆pspA exhibited a higher persister ratio compared to the wild type when challenged with various antibiotics. Microscopic images revealed that ∆pspA showed accelerated formation of protein aggresomes, which were collections of endogenous protein aggregates. Time-lapse imaging established the positive correlation between protein aggregation and antibiotic persistence of ∆pspA at the single-cell level. To investigate the molecular mechanism underlying accelerated protein aggregation, we performed transcriptome profiling and found the increased abundance of chaperons and a general metabolic slowdown in the absence of pspA. Consistent with the transcriptomic results, the ∆pspA strain showed a decreased cellular ATP level, which could be rescued by glucose supplementation. Then, we verified that replenishment of cellular ATP levels by adding glucose could inhibit protein aggregation and reduce persister formation in ∆pspA. This study highlights the novel role of pspA in maintaining proteostasis, regulating dormancy depth, and affecting antibiotic persistence during stationary phase.


Assuntos
Antibacterianos , Agregados Proteicos , Antibacterianos/farmacologia , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo
7.
J Antimicrob Chemother ; 79(1): 128-133, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37991189

RESUMO

OBJECTIVES: We explored the epidemiological and molecular characteristics of Candida parapsilosis sensu stricto isolates in China, and their mechanisms of azole resistance. METHODS: Azole susceptibilities of 2318 non-duplicate isolates were determined using CLSI broth microdilution. Isolates were genotyped by a microsatellite typing method. Molecular resistance mechanisms were also studied and functionally validated by CRISPR/Cas9-based genetic alterations. RESULTS: Fluconazole resistance occurred in 2.4% (n = 56) of isolates, and these isolates showed a higher frequency of distribution in ICU inpatients compared with susceptible isolates (48.2%, n = 27/56 versus 27.8%, 613/2208; P = 0.019). Microsatellite-genotyping analysis yielded 29 genotypes among 56 fluconazole-resistant isolates, of which 10 genotypes, including 37 isolates, belonged to clusters, persisting and transmitting in Chinese hospitals for 1-29 months. Clusters harbouring Erg11Y132F (5/10; 50%) were predominant in China. Among these, the second most dominant cluster MT07, including seven isolates, characteristically harbouring Erg11Y132F and Mrr1Q625K, lent its carriage to being one of the strongest associations with cross-resistance and high MICs of fluconazole (>256 mg/L) and voriconazole (2-8 mg/L), causing transmission across two hospitals. Among mutations tested, Mrr1Q625K led to the highest-level increase of fluconazole MIC (32-fold), while mutations located within or near the predicted transcription factor domain of Tac1 (D440Y, T492M and L518F) conferred cross-resistance to azoles. CONCLUSIONS: This study is the first Chinese report of persistence and transmissions of multiple fluconazole-resistant C. parapsilosis sensu stricto clones harbouring Erg11Y132F, and the first demonstration of the mutations Erg11G307A, Mrr1Q625K, Tac1L263S, Tac1D440Y and Tac1T492M as conferring resistance to azoles.


Assuntos
Candida parapsilosis , Fluconazol , Fluconazol/farmacologia , Candida parapsilosis/genética , Antifúngicos/farmacologia , Azóis/farmacologia , China/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-39315881

RESUMO

BACKGROUND: To investigate susceptibility to contezolid, a novel oxazolidinone, multicentre surveillance was conducted involving 2449 strains of Staphylococcus and Enterococcus collected from 65 hospitals across China. METHODS: The MICs of contezolid, linezolid and other clinically significant antibiotics were determined by the broth microdilution method. Consistency with the broth microdilution method for contezolid was assessed using agar dilution method, as well as disc diffusion and ETEST for linezolid, respectively. WGS was conducted on all 20 linezolid-resistant and 30 randomly non-resistant strains to analyse linezolid resistance genes (optrA, poxtA, cfr) and 23S rRNA mutation sites. RESULTS: All strains exhibited WT susceptibility to contezolid, while resistance proportions to daptomycin, vancomycin, teicoplanin, tigecycline and eravacycline ranged from 0% to 5.2% in Staphylococcus, and from 0% to 7.8% in Enterococcus. Linezolid resistance was higher in Enterococcus faecalis (4.4%) compared with Enterococcus faecium (0.2%). Contezolid showed a lower MIC50 (0.5 mg/L) than linezolid (2 mg/L) for methicillin-resistant Staphylococcus. Against Enterococcus, contezolid demonstrated a cumulative MIC percentage of 70% for VRE and 39.1% for E. faecalis (at MIC = 1 mg/L), whereas linezolid showed 0% and 1.1%, respectively. Among the 20 linezolid-resistant Enterococcus strains, all carried the optrA gene without 23S rRNA mutations. For contezolid, MICs were 4 mg/L for 19 strains and 2 mg/L for 1 strain. The ETEST, agar dilution and disc diffusion methods showed essential and categorical agreements of >90% for linezolid, with no major errors or very major errors. CONCLUSIONS: Contezolid demonstrated significant in vitro antibacterial activity against methicillin-resistant Staphylococcus, VRE and linezolid-resistant E. faecalis.

9.
J Antimicrob Chemother ; 79(9): 2246-2250, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011845

RESUMO

OBJECTIVES: To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS: We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS: The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS: The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.


Assuntos
Acinetobacter baumannii , Antibacterianos , Enterobacter cloacae , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Tetraciclinas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Tetraciclinas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , China/epidemiologia
10.
PLoS Pathog ; 18(8): e1010693, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914009

RESUMO

Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.


Assuntos
Infecções por Klebsiella , Sepse , Animais , Cápsulas Bacterianas , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Células de Kupffer , Fígado , Camundongos , Polissacarídeos
11.
J Med Virol ; 96(4): e29602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597349

RESUMO

China experienced severe epidemics of multiple respiratory pathogens in 2023 after lifting "Zero-COVID" policy. The present study aims to investigate the changing circulation and infection patterns of respiratory pathogens in 2023. The 160 436 laboratory results of influenza virus and respiratory syncytial virus (RSV) from February 2020 to December 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from June 2020 to December 2023, Mycoplasma pneumoniae, adenovirus, and human rhinovirus from January 2023 to December 2023 were analyzed. We observed the alternating epidemics of SARS-CoV-2 and influenza A virus (IAV), as well as the out-of-season epidemic of RSV during the spring and summer of 2023. Cocirculation of multiple respiratory pathogens was observed during the autumn and winter of 2023. The susceptible age range of RSV in this winter epidemic (10.5, interquartile range [IQR]: 5-30) was significantly higher than previously (4, IQR: 3-34). The coinfection rate of IAV and RSV in this winter epidemic (0.695%) was significantly higher than that of the last cocirculation period (0.027%) (p < 0.001). Similar trend was also found in the coinfection of IAV and SARS-CoV-2. The present study observed the cocirculation of multiple respiratory pathogens, changing age range of susceptible population, and increasing coinfection rates during the autumn and winter of 2023, in Beijing, China.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Estudos Retrospectivos , Infecções Respiratórias/epidemiologia , Pequim/epidemiologia , Estações do Ano , Coinfecção/epidemiologia , China/epidemiologia , SARS-CoV-2 , Influenza Humana/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia
12.
Virol J ; 21(1): 261, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443958

RESUMO

BACKGROUND: Human Papillomavirus (HPV) DNA screening was a crucial element in the fight against cervical cancer and had been adopted in many countries, including China. However, the onset of the COVID-19 pandemic in March 2020 disrupted this program significantly. METHODS: The aim of this study is to investigate the prevalence and distribution of HPV genotypes among the population undergoing cervical cancer screening during the pandemic period. From January 2017 to December 2022, Peking Union Medical College Hospital gathered 45,496 cervical swabs from individuals undergoing cervical cancer screening. These samples were analyzed to detect fifteen high-risk HPV (HR-HPV) DNA types and a combination of two low-risk HPV (LR-HPV) types. RESULTS: The study revealed an overall infection rate of 11.24% (5,114/45,496), with 11.06% (5,032/45,496) of individuals infected with HR-HPV. The number of HPV screening patients and the infection rates of HPV, HR-HPV, LR-HPV, multiple genotype HPV (M-HPV), and single genotype HPV (S-HPV) during the pandemic were lower than those observed before the pandemic. Moreover, the age group with the highest percentage of infected individuals was under 45-49 years, with HPV52, HPV58, HPV16, and HPV51 being the most prevalent genotypes. Notably, HPV66 emerged as the fifth most commonly detected genotype during the pandemic. Additionally, among the eleven age groups examined, women under 25 exhibited the highest detection rate, with HPV52 and HPV16 infection rates exceeding those observed in the pre-pandemic period. CONCLUSIONS: The findings of this study offer significant insights for shaping HPV prevention strategies and enhancing cervical cancer screening initiatives in China following the epidemic.


Assuntos
COVID-19 , Detecção Precoce de Câncer , Genótipo , Papillomaviridae , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Adulto , Prevalência , China/epidemiologia , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Idoso , Adulto Jovem , DNA Viral/genética , Pandemias
13.
BMC Infect Dis ; 24(1): 381, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589778

RESUMO

BACKGROUND: Nocardia farcinica is one of the most common Nocardia species causing human infections. It is an opportunistic pathogen that often infects people with compromised immune systems. It could invade human body through respiratory tract or skin wounds, cause local infection, and affect other organs via hematogenous dissemination. However, N. farcinica-caused bacteremia is uncommon. In this study, we report a case of bacteremia caused by N. farcinica in China. CASE PRESENTATION: An 80-year-old woman was admitted to Peking Union Medical College Hospital with recurrent fever, right abdominal pain for one and a half month, and right adrenal gland occupation. N. farcinica was identified as the causative pathogen using blood culture and plasma metagenomics next-generation sequencing (mNGS). The clinical considerations included bacteremia and adrenal gland abscess caused by Nocardia infection. As the patient was allergic to sulfanilamide, imipenem/cilastatin and linezolid were empirically administered. Unfortunately, the patient eventually died less than a month after the initiation of anti-infection treatment. CONCLUSION: N. farcinica bacteremia is rare and its clinical manifestations are not specific. Its diagnosis depends on etiological examination, which can be confirmed using techniques such as Sanger sequencing and mNGS. In this report, we have reviewed cases of Nocardia bloodstream infection reported in the past decade, hoping to improve clinicians' understanding of Nocardia bloodstream infection and help in its early diagnosis and timely treatment.


Assuntos
Bacteriemia , Nocardiose , Nocardia , Sepse , Feminino , Humanos , Idoso de 80 Anos ou mais , Nocardia/genética , Nocardiose/diagnóstico , Nocardiose/tratamento farmacológico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico
14.
BMC Med Educ ; 24(1): 142, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355463

RESUMO

BACKGROUND: Infectious diseases are a serious threat to human especially since the COVID-19 outbreak has proved the importance and urgency of their diagnosis and treatment again. Metagenomic next-generation sequencing (mNGS) has been widely used and recognized in clinical and carried out localized testing in hospitals. Increasing the training of mNGS detection technicians can enhance their professional quality and more effectively realize the application value of the hospital platform. METHODS: Based on the initial theoretical understanding and practice of the mNGS platform for localization construction, we have designed a training program to enhance the ability of technicians to detect pathogens by utilizing mNGS, and hence to conduct training practices nationwide. RESULTS: Until August 30, 2022, the page views of online classes have reached 51,500 times and 6 of offline small-scale training courses have been conducted. A total of 67 trainees from 67 hospitals have participated in the training with a qualified rate of 100%. After the training course, the localization platform of 1 participating hospital has been put into use, 2 have added the mNGS localization platform for admission, among which 3 have expressed strong intention of localization. CONCLUSIONS: This study focuses on the training procedures and practical experience of the project which is the first systematic standardized program of mNGS in the world. It solves the training difficulties in the current industry, and effectively promotes the localization construction and application of mNGS in hospitals. It has great development potential in the future and is worth further promotion.


Assuntos
COVID-19 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , China , Surtos de Doenças , Hospitalização , Sensibilidade e Especificidade , Teste para COVID-19
15.
Mycopathologia ; 189(3): 32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622365

RESUMO

The rare fungus Candida saopaulonensis has never been reported to be associated with human infection. We report the draft genome sequence of the first clinical isolate of C. saopaulonensis, which was isolated from a very premature infant with sepsis. This is the first genome assembly reaching the near-complete chromosomal level with structural annotation for this species, opening up avenues for exploring evolutionary patterns and genetic mechanisms of pathogenesis.


Assuntos
Candida , Sepse , Humanos , Recém-Nascido , Candida/genética , Genoma Fúngico , Recém-Nascido Prematuro
16.
Mycopathologia ; 189(5): 78, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222187

RESUMO

We describe for the first time, a high-quality genome for a rare human yeast pathogen Candida mucifera, from a patient with chronic suppurative otitis media. This pathogen exhibited reduced azole susceptibility, similar to its close relatives within the Trichomonascus ciferrii species complex.


Assuntos
Candida , Genoma Fúngico , Otite Média , Sequenciamento Completo do Genoma , Humanos , Candida/genética , Candida/isolamento & purificação , Candida/classificação , Otite Média/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA
17.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637433

RESUMO

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris , Candida , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 989-994, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170001

RESUMO

Objective: To study the distribution and drug resistance characteristics of pathogenic bacteria in the elderly population of China by collecting and analyzing the standardized case data on the pathogens of infections in elderly patients, and to facilitate the establishment of a standardized layered surveillance system for pathogenic bacteria in China. Methods: We collected the case data of elderly patients (≥65 years old) from 62 sentinel hospitals across the country in 2021. Then, we statistically analyzed the data by patient age, their geographical region, the distribution of pathogenic bacteria, and the drug resistance characteristics of main pathogens. Results: A total of 3468 cases from across the country were included in the study. The top three sources of patients were the intensive care unit (13.2%), the department of respiratory medicine (11.2%), and the department of general surgery (8.4%). The top three types of specimens were urine (25.5%), sputum (20.6%), and blood (18.7%). A total of 3468 strains of pathogens were isolated, among which, 78.9% were gram-negative bacteria and 21.1% were gram-positive bacteria. The top five types of bacteria were Escherichia coli (20.9%), Klebsiella pneumoniae (18.3%), Pseudomonas aeruginosa (11.2%), Staphylococcus aureus (9.0%), and Acinetobacter baumannii (7.0%). The isolation rates of common important drug-resistant bacteria were 38.0% for methicillin-resistant Staphylococcus aureus (MRSA), 68.7% for carbapenem-resistant Acinetobacter baumannii (CRAB), and 38.2% for carbapenem-resistant Pseudomonas aeruginosa (CRPA), 20.1% for carbapenem-resistant Klebsiella pneumoniae (CRKP), 5.2% for carbapenem-resistant Escherichia coli (CRECO), and 2.1% for vancomycin-resistant Enterococcus (VRE). There were differences in the isolation rates of CRAB and CRKP in clinical care in the elderly population in seven geographical regions of China (P<0.05). Klebsiella pneumoniae is the most important pathogen in the elderly population ≥85 years old, and the isolation rates of CRKP showed significant differences in different age groups (P<0.05). Conclusion: There are significant differences in the drug resistance of pathogenic bacteria in the elderly populations of different regions and age groups in China. Therefore, monitoring the distribution and drug resistance of pathogenic bacteria in the elderly population and formulating targeted treatment plans according to the characteristics of the specific regions and age groups are of great significance to the improvement in the treatment outcomes and prognosis of the elderly population.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Humanos , Idoso , China/epidemiologia , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Idoso de 80 Anos ou mais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Bacterianas/microbiologia , Infecções Bacterianas/epidemiologia , Testes de Sensibilidade Microbiana , Masculino , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Feminino , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação
19.
BMC Genomics ; 24(1): 82, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809964

RESUMO

BACKGROUND: Tropical water lily is an aquatic plant with high ornamental value, but it cannot overwinter naturally at high latitudes. The temperature drop has become a key factor restricting the development and promotion of the industry. RESULTS: The responses of Nymphaea lotus and Nymphaea rubra to cold stress were analyzed from the perspective of physiology and transcriptomics. Under the cold stress, Nymphaea rubra had obvious leaf edge curling and chlorosis. The degree of peroxidation of its membrane was higher than that of Nymphaea lotus, and the content of photosynthetic pigments also decreased more than that of Nymphaea lotus. The soluble sugar content, SOD enzyme activity and CAT enzyme activity of Nymphaea lotus were higher than those of Nymphaea rubra. This indicated that there were significant differences in the cold sensitivity of the two varieties. GO enrichment and KEGG pathway analysis showed that many stress response genes and pathways were affected and enriched to varying degrees under the cold stress, especially plant hormone signal transduction, metabolic pathways and some transcription factor genes were from ZAT gene family or WKRY gene family. The key transcription factor ZAT12 protein in the cold stress response process has a C2H2 conserved domain, and the protein is localized in the nucleus. Under the cold stress, overexpression of the NlZAT12 gene in Arabidopsis thaliana increased the expression of some cold-responsive protein genes. The content of reactive oxygen species and MDA in transgenic Arabidopsis thaliana was lower, and the content of soluble sugar was higher, indicating that overexpression of NlZAT12 can improve the cold tolerance of Arabidopsis thaliana. CONCLUSION: We demonstrate that ethylene signalling and reactive oxygen species signalling play critical roles in the response of the two cultivars to cold stress. The key gene NlZAT12 for improving cold tolerance was identified. Our study provides a theoretical basis for revealing the molecular mechanism of tropical water lily in response to cold stress.


Assuntos
Arabidopsis , Nymphaea , Nymphaeaceae , Resposta ao Choque Frio/genética , Arabidopsis/genética , Nymphaeaceae/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Transcriptoma , Fatores de Transcrição/metabolismo , Nymphaea/genética , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
20.
Emerg Infect Dis ; 29(3): 576-584, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823029

RESUMO

Candida haemulonii, a relative of C. auris, frequently shows antifungal resistance and is transmissible. However, molecular tools for genotyping and investigating outbreaks are not yet established. We performed genome-based population analysis on 94 C. haemulonii strains, including 58 isolates from China and 36 other published strains. Phylogenetic analysis revealed that C. haemulonii can be divided into 4 clades. Clade 1 comprised strains from China and other global strains; clades 2-4 contained only isolates from China, were more recently evolved, and showed higher antifungal resistance. Four regional epidemic clusters (A, B, C, and D) were identified in China, each comprising ≥5 cases (largest intracluster pairwise single-nucleotide polymorphism differences <50 bp). Cluster A was identified in 2 hospitals located in the same city, suggesting potential intracity transmissions. Cluster D was resistant to 3 classes of antifungals. The emergence of more resistant phylogenetic clades and regional dissemination of antifungal-resistant C. haemulonii warrants further monitoring.


Assuntos
Antifúngicos , Candida , Candidíase , Farmacorresistência Fúngica , Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candida/genética , Candidíase/tratamento farmacológico , Candidíase/genética , Candidíase/microbiologia , China , Testes de Sensibilidade Microbiana , Filogenia , Células Clonais , Farmacorresistência Fúngica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA