RESUMO
In this study, a hypergolic linker (dicyanamide, DCA) and a high-energy nitrogen-rich ligand (1,5-diaminotetrazole, DAT) were applied to construct high-energy metal-organic frameworks (HEMOFs) with hypergolic property. Three novel metal-organic frameworks (MOFs) were synthesized via a mild method with fascinating 2D polymeric architectures, and they could ignite spontaneously upon contact with white fuming nitric acid (WFNA). The gravimetric energy densities of the three HEMOFs all exceeded 26.2 kJ·g-1. The cupric MOF exhibits the highest gravimetric and volumetric energy density of 27.5 kJ·g-1 and 51.3 kJ·cm-3, respectively. By adjusting the metal cations, high-energy ligands and hypergolic linkers can improve the performance of hypergolic MOFs. This work provides a strategy for manufacturing MOFs as potential high-energy hypergolic fuels.
RESUMO
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Assuntos
Alginatos , Diferenciação Celular , Proliferação de Células , Gelatina , Hidrogéis , Polilisina , Impressão Tridimensional , Alicerces Teciduais , Animais , Alginatos/química , Gelatina/química , Polilisina/química , Diferenciação Celular/efeitos dos fármacos , Alicerces Teciduais/química , Suínos , Proliferação de Células/efeitos dos fármacos , Camundongos , Hidrogéis/química , Células-Tronco/citologia , Carne , Desenvolvimento Muscular , Engenharia Tecidual/métodos , Linhagem Celular , Bioimpressão/métodos , Carne in vitroRESUMO
Background: Synaptic transmission between neurons and glioma cells can promote glioma progression. The soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors (SNARE) play a key role in synaptic functions. We aimed to construct and validate a novel model based on the SNARE proteins to predict the prognosis and immune microenvironment of glioma. Methods: Differential expression analysis and COX regression analysis were used to identify key SRGs in glioma datasets, and we constructed a prognostic risk model based on the key SRGs. The prognostic value and predictive performance of the model were assessed in The Cancer Genome Atlas (TCGA) and Chinese glioma Genome Atlas (CGGA) datasets. Functional enrichment analysis and immune-related evaluation were employed to reveal the association of risk scores with tumor progression and microenvironment. A prognostic nomogram containing the risk score was established and assessed by calibration curves and time-dependent receiver operating characteristic curves. We verified the changes of the key SRGs in glioma specimens and cells by real-time quantitative PCR and Western blot analyses. Results: Vesicle-associated membrane protein 2 (VAMP2) and vesicle-associated membrane protein 5 (VAMP5) were identified as two SRGs affecting the prognoses of glioma patients. High-risk patients characterized by higher VAMP5 and lower VAMP2 expression had a worse prognosis. Higher risk scores were associated with older age, higher tumor grades, IDH wild-type, and 1p19q non-codeletion. The SRGs risk model showed an excellent predictive performance in predicting the prognosis in TCGA and CGGA datasets. Differentially expressed genes between low- and high-risk groups were mainly enriched in the pathways related to immune infiltration, tumor metastasis, and neuronal activity. Immune score, stromal score, estimate score, tumor mutational burden, and expression of checkpoint genes were positively correlated with risk scores. The nomogram containing the risk score showed good performance in predicting the prognosis of glioma. Low VAMP2 and high VAMP5 were found in different grades of glioma specimens and cell lines. Conclusion: We constructed and validated a novel risk model based on the expression of VAMP2 and VAMP5 by bioinformatics analysis and experimental confirmation. This model might be helpful for clinically predicting the prognosis and response to immunotherapy of glioma patients.
RESUMO
The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different Alexandrium PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in C. farreri. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.
Assuntos
Caspases/genética , Dinoflagellida , Toxinas Marinhas/toxicidade , Pectinidae/enzimologia , Animais , Trato Gastrointestinal/metabolismo , Rim/metabolismo , Pectinidae/genética , FilogeniaRESUMO
Fuzhuan Brick-Tea is a postfermented product with the hypoglycemic effect, which is prepared from the leaves of Camellia sinensis var. sinensis. However, the material basis associated with the hypoglycemic effect was not clear. The present research was designed to explore the hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced type II diabetic mice. Then an ultra-high pressure liquid chromatography along with quadrupole time of flight mass spectrometry was used to analyze the phytochemicals in Fuzhuan Brick-Tea fractions. As a result, the hypoglycemic and hypolipidemic effects were evidently observed from the serum biochemical indexes and liver pathological examination in type II diabetic mice. In addition, there were total of 20 major components including eight lysophosphatidylcholines (Lyso-PCs), five fatty acids, and seven novel theophylline derivatives tentatively identified in the active fraction from water extract. Therefore, these components were assumed to contribute partly to the hypoglycemic effect of Fuzhuan Brick-Tea. These findings also give the evidence that the Lyso-PCs, fatty acids, and novel theophylline derivatives in Fuzhuan Brick-Tea may provide benefits in ameliorating disorders of glucose and lipid metabolism. PRACTICAL APPLICATION: This study suggests that the Lyso-PCs, fatty acids, and novel theophylline derivatives in Fuzhuan Brick-Tea may provide benefits in ameliorating disorders of glucose and lipid metabolism. It can be taken as a beneficial diet additive or nutraceutical.
Assuntos
Camellia sinensis/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Humanos , Hipoglicemiantes/química , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Extratos Vegetais/química , Folhas de Planta/química , Estreptozocina , Espectrometria de Massas em Tandem/métodos , Chá/químicaRESUMO
The binding interactions of lysozyme with 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were investigated by UV-vis absorption, CD, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of chlorophenols. H-bonds and hydrophobic interactions played major roles in stabilizing the chlorophenols-lysozyme complex. The distances r between chlorophenols and lysozyme were calculated to be 1.94nm, 2.75nm, 3.54nm, and 3.76nm for 2-CP, 2,4-DCP, 2,4,6-TCP, and PCP, respectively. The effects of chlorophenols on the conformation of lysozyme were analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.