Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Breast Cancer Res Treat ; 197(3): 515-523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513955

RESUMO

OBJECTIVES: This study aimed to determine whether post-neoadjuvant therapy (NAT) axillary ultrasound (AUS) could reduce the false-negative rate (FNR) of sentinel lymph node biopsy (SLNB). We also performed subgroup analyses to identify the appropriate patient for SLNB. METHODS: A total of 220 patients with cytologically proven axillary node-positive breast cancer who underwent both SLNB and axillary lymph node dissection (ALND) after NAT were included. We calculated the FNR of SLNB. In the case of post-NAT AUS results available, AUS was classified as negative or positive. Then the FNR of post-NAT AUS combined with SLNB was evaluated. Subgroup analyses based on the number of sentinel lymph nodes removed, molecular subtypes, and the clinical N stage were also performed. RESULTS: The overall axillary lymph node pathological complete response rate was 45.5% (100/220). The FNR of SLNB alone was 15.8% (95%CI: 9.2 to 22.5%). Post-NAT AUS results were available for 181 patients. When combined negative post-NAT AUS results and SLNB, the FNR was reduced to 7.5% (95%CI: 2.4 to 12.7%). Subgroup analyses of the FNR for SLNB alone and negative post-NAT AUS combined with SLNB were shown as follows: in cases patients with less than three sentinel lymph nodes (SLNs) and at least three SLNs removed, the FNR was decreased from 24.5 to 13.2%, and 9.0 to 5.0%, respectively. The FNR was decreased from 20.8 to 10.5% in HR+/HER2+subgroup, 21.4 to 16.7% in HR-/HER2+subgroup, 15.9 to 7.0% in HR+/HER2- subgroup, and 0% in HR-/HER2- subgroup, respectively. For cN1 patients, the FNR was decreased from 18.1 to 12.1% while 17.1 to 3.6% for cN2 patients and 0% for cN3 patients. CONCLUSION: Using negative post-NAT AUS may help to decrease the FNR and improve patient selection for SLNB.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Humanos , Feminino , Biópsia de Linfonodo Sentinela/métodos , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Metástase Linfática/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Linfonodos/patologia , Excisão de Linfonodo/métodos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Axila/patologia , Estadiamento de Neoplasias
2.
Radiology ; 308(1): e222830, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37432083

RESUMO

Background Breast cancer is highly heterogeneous, resulting in different treatment responses to neoadjuvant chemotherapy (NAC) among patients. A noninvasive quantitative measure of intratumoral heterogeneity (ITH) may be valuable for predicting treatment response. Purpose To develop a quantitative measure of ITH on pretreatment MRI scans and test its performance for predicting pathologic complete response (pCR) after NAC in patients with breast cancer. Materials and Methods Pretreatment MRI scans were retrospectively acquired in patients with breast cancer who received NAC followed by surgery at multiple centers from January 2000 to September 2020. Conventional radiomics (hereafter, C-radiomics) and intratumoral ecological diversity features were extracted from the MRI scans, and output probabilities of imaging-based decision tree models were used to generate a C-radiomics score and ITH index. Multivariable logistic regression analysis was used to identify variables associated with pCR, and significant variables, including clinicopathologic variables, C-radiomics score, and ITH index, were combined into a predictive model for which performance was assessed using the area under the receiver operating characteristic curve (AUC). Results The training data set was comprised of 335 patients (median age, 48 years [IQR, 42-54 years]) from centers A and B, and 590, 280, and 384 patients (median age, 48 years [IQR, 41-55 years]) were included in the three external test data sets. Molecular subtype (odds ratio [OR] range, 4.76-8.39 [95% CI: 1.79, 24.21]; all P < .01), ITH index (OR, 30.05 [95% CI: 8.43, 122.64]; P < .001), and C-radiomics score (OR, 29.90 [95% CI: 12.04, 81.70]; P < .001) were independently associated with the odds of achieving pCR. The combined model showed good performance for predicting pCR to NAC in the training data set (AUC, 0.90) and external test data sets (AUC range, 0.83-0.87). Conclusion A model that combined an index created from pretreatment MRI-based imaging features quantitating ITH, C-radiomics score, and clinicopathologic variables showed good performance for predicting pCR to NAC in patients with breast cancer. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Rauch in this issue.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Pessoa de Meia-Idade , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Razão de Chances
3.
J Magn Reson Imaging ; 58(5): 1580-1589, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36797654

RESUMO

BACKGROUND: Preoperative assessment of lymphovascular invasion (LVI) in invasive breast cancer (IBC) is of high clinical relevance for treatment decision-making and prognosis. PURPOSE: To investigate the associations of preoperative clinical and magnetic resonance imaging (MRI) characteristics with LVI and disease-free survival (DFS) by using machine learning methods in patients with IBC. STUDY TYPE: Retrospective. POPULATION: Five hundred and seventy-five women (range: 24-79 years) with IBC who underwent preoperative MRI examinations at two hospitals, divided into the training (N = 386) and validation datasets (N = 189). FIELD STRENGTH/SEQUENCE: Axial fat-suppressed T2-weighted turbo spin-echo sequence and dynamic contrast-enhanced with fat-suppressed T1-weighted three-dimensional gradient echo imaging. ASSESSMENT: MRI characteristics (clinical T stage, breast edema score, MRI axillary lymph node status, multicentricity or multifocality, enhancement pattern, adjacent vessel sign, and increased ipsilateral vascularity) were reviewed independently by three radiologists. Logistic regression (LR), eXtreme Gradient Boosting (XGBoost), k-Nearest Neighbor (KNN), and Support Vector Machine (SVM) algorithms were used to establish the models by combing preoperative clinical and MRI characteristics for assessing LVI status in the training dataset, and the methods were further applied in the validation dataset. The LVI score was calculated using the best-performing of the four models to analyze the association with DFS. STATISTICAL TESTS: Chi-squared tests, variance inflation factors, receiver operating characteristics (ROC), Kaplan-Meier curve, log-rank, Cox regression, and intraclass correlation coefficient were performed. The area under the ROC curve (AUC) and hazard ratios (HR) were calculated. A P-value <0.05 was considered statistically significant. RESULTS: The model established by the XGBoost algorithm had better performance than LR, SVM, and KNN models, achieving an AUC of 0.832 (95% confidence interval [CI]: 0.789, 0.876) in the training dataset and 0.838 (95% CI: 0.775, 0.901) in the validation dataset. The LVI score established by the XGBoost model was an independent indicator of DFS (adjusted HR: 2.66, 95% CI: 1.22-5.80). DATA CONCLUSION: The XGBoost model based on preoperative clinical and MRI characteristics may help to investigate the LVI status and survival in patients with IBC. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Metástase Linfática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina
4.
Biochem Genet ; 61(6): 2599-2617, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37202601

RESUMO

TRP channels have an important role in regulating the function of gastrointestinal epithelial cells. The aim of this study was to investigate the molecular mechanisms of genes associated with TRP channels in Crohn's disease (CD) by bioinformatics approach and to identify potential key biomarkers. In our study, we identified TRP channel-related differentially expressed genes (DEGs) based on the GSE95095 dataset and the TRP channel-related gene set from the GeneCards database. Hub genes (CXCL8, HIF1A, NGF, JUN, IL1A) were identified by the PPI network and validated by the external GSE52746 dataset. Immune infiltration analysis revealed that CXCL8 was significantly correlated with B cells memory, NK cells activated, Mast cells resting, Mast cells activated, and Neutrophils. GSEA of CXCL8 results showed inositol phosphate metabolism, RNA polymerase, propanoate metabolism, MAPK signaling pathway, base excision repair, and Calcium signaling pathway. In addition, we constructed a lncRNA-miRNA-mRNA ceRNA network and a drug-gene interaction network. Finally, we performed in vitro experiments to verify that LPS induced CXCL8 expression in HT-29 cells and that knockdown of CXCL8 inhibited the inflammatory stimulatory effects of LPS. This study reveals that CXCL8 plays an important role in the pathogenesis of Crohn's disease and is expected to be a novel biomarker.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/genética , Metilação , Lipopolissacarídeos , Biomarcadores , RNA
5.
Cancer Immunol Immunother ; 71(5): 1221-1231, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34642778

RESUMO

BACKGROUND: The Crohn's-like lymphoid reaction (CLR) is manifested as peritumoral lymphocytes aggregation in colon cancer, which is a major component of the host immune response to cancer. However, the lack of a unified and objective CLR evaluation standard limits its clinical application. We, therefore, developed a deep learning model for the fully automated CLR density quantification on routine hematoxylin and eosin (HE)-stained whole-slide images (WSIs) and further investigated its prognostic validity for patient stratification. METHODS: The CLR density was calculated by using a deep learning method on HE-stained WSIs. A training (N = 279) and a validation (N = 194) cohorts were used to evaluate the prognostic value of CLR density for overall survival (OS). RESULT: The fully automated quantified CLR density was an independent prognostic factor, with high CLR density associated with increased OS in the discovery (HR 0.58, 95% CI 0.38-0.89, P = 0.012) and validation cohort (0.45, 0.23-0.88, 0.020). Integrating CLR density into a Cox model with other risk factors showed improved prognostic capability. CONCLUSION: We developed a new immune indicator (CLR density) quantified by a deep learning method to evaluate the lymphocytes aggregation in colon cancer. The CLR density was demonstrated its predictive value for OS in two independent cohorts. This approach allows for the objective and standardized quantification while reducing pathologists' workload. Therefore, this fully automated standardized method of CLR evaluation had potential clinical value.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Inteligência Artificial , Neoplasias do Colo/diagnóstico , Humanos , Prognóstico , Modelos de Riscos Proporcionais
6.
J Transl Med ; 20(1): 261, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672787

RESUMO

BACKGROUND: High immune infiltration is associated with favourable prognosis in patients with non-small-cell lung cancer (NSCLC), but an automated workflow for characterizing immune infiltration, with high validity and reliability, remains to be developed. METHODS: We performed a multicentre retrospective study of patients with completely resected NSCLC. We developed an image analysis workflow for automatically evaluating the density of CD3+ and CD8+ T-cells in the tumour regions on immunohistochemistry (IHC)-stained whole-slide images (WSIs), and proposed an immune scoring system "I-score" based on the automated assessed cell density. RESULTS: A discovery cohort (n = 145) and a validation cohort (n = 180) were used to assess the prognostic value of the I-score for disease-free survival (DFS). The I-score (two-category) was an independent prognostic factor after adjusting for other clinicopathologic factors. Compared with a low I-score (two-category), a high I-score was associated with significantly superior DFS in the discovery cohort (adjusted hazard ratio [HR], 0.54; 95% confidence interval [CI] 0.33-0.86; P = 0.010) and validation cohort (adjusted HR, 0.57; 95% CI 0.36-0.92; P = 0.022). The I-score improved the prognostic stratification when integrating it into the Cox proportional hazard regression models with other risk factors (discovery cohort, C-index 0.742 vs. 0.728; validation cohort, C-index 0.695 vs. 0.685). CONCLUSION: This automated workflow and immune scoring system would advance the clinical application of immune microenvironment evaluation and support the clinical decision making for patients with resected NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos T CD8-Positivos , Humanos , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Microambiente Tumoral
7.
J Transl Med ; 20(1): 595, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517832

RESUMO

BACKGROUND: Tumor histomorphology analysis plays a crucial role in predicting the prognosis of resectable lung adenocarcinoma (LUAD). Computer-extracted image texture features have been previously shown to be correlated with outcome. However, a comprehensive, quantitative, and interpretable predictor remains to be developed. METHODS: In this multi-center study, we included patients with resectable LUAD from four independent cohorts. An automated pipeline was designed for extracting texture features from the tumor region in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) at multiple magnifications. A multi-scale pathology image texture signature (MPIS) was constructed with the discriminative texture features in terms of overall survival (OS) selected by the LASSO method. The prognostic value of MPIS for OS was evaluated through univariable and multivariable analysis in the discovery set (n = 111) and the three external validation sets (V1, n = 115; V2, n = 116; and V3, n = 246). We constructed a Cox proportional hazards model incorporating clinicopathological variables and MPIS to assess whether MPIS could improve prognostic stratification. We also performed histo-genomics analysis to explore the associations between texture features and biological pathways. RESULTS: A set of eight texture features was selected to construct MPIS. In multivariable analysis, a higher MPIS was associated with significantly worse OS in the discovery set (HR 5.32, 95%CI 1.72-16.44; P = 0.0037) and the three external validation sets (V1: HR 2.63, 95%CI 1.10-6.29, P = 0.0292; V2: HR 2.99, 95%CI 1.34-6.66, P = 0.0075; V3: HR 1.93, 95%CI 1.15-3.23, P = 0.0125). The model that integrated clinicopathological variables and MPIS had better discrimination for OS compared to the clinicopathological variables-based model in the discovery set (C-index, 0.837 vs. 0.798) and the three external validation sets (V1: 0.704 vs. 0.679; V2: 0.728 vs. 0.666; V3: 0.696 vs. 0.669). Furthermore, the identified texture features were associated with biological pathways, such as cytokine activity, structural constituent of cytoskeleton, and extracellular matrix structural constituent. CONCLUSIONS: MPIS was an independent prognostic biomarker that was robust and interpretable. Integration of MPIS with clinicopathological variables improved prognostic stratification in resectable LUAD and might help enhance the quality of individualized postoperative care.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Estudos Retrospectivos , Modelos de Riscos Proporcionais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia
8.
Eur Radiol ; 32(12): 8213-8225, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35704112

RESUMO

OBJECTIVES: To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. METHODS: This retrospective study included women with clinical T1 and T2 stage breast cancer and preoperative MRI examination in two independent cohorts from May 2014 to December 2020. Low (< 3 LNs+) and high (≥ 3 LNs+) pathological ALN (pALN) burden were recorded as endpoint. Breast edema score (BES) was evaluated at T2WI. Univariable and multivariable analyses were performed by the logistic regression model. The added predictive value of BES was examined utilizing the area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). RESULTS: A total of 1092 patients were included in this study. BES was identified as the independent predictor of pALN burden in primary (n = 677) and validation (n = 415) cohorts. The analysis using MRI-ALN status showed that BES significantly improved the predictive performance of pALN burden (AUC: 0.65 vs 0.71, p < 0.001; IDI = 0.045, p < 0.001; continuous NRI = 0.159, p = 0.050). These results were confirmed in the validation cohort (AUC: 0.64 vs 0.69, p = 0.009; IDI = 0.050, p < 0.001; continuous NRI = 0.213, p = 0.047). Furthermore, BES was positively correlated with biologically invasive clinicopathological factors (p < 0.05). CONCLUSIONS: In individuals with early-stage breast cancer, preoperative MRI characteristics of breast edema could be a promising predictor for pALN burden, which may aid in treatment planning. KEY POINTS: • In this retrospective study of 1092 patients with early-stage breast cancer from two cohorts, the MRI characteristic of breast edema has independent and additive predictive value for assessing axillary lymph node burden. • Breast edema characteristics at T2WI positively correlated with biologically invasive clinicopathological factors, which may be useful for preoperative diagnosis and treatment planning for individual patients with breast cancer.


Assuntos
Doenças Mamárias , Neoplasias da Mama , Humanos , Feminino , Estudos Retrospectivos , Neoplasias da Mama/complicações , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Metástase Linfática/patologia , Axila/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Doenças Mamárias/patologia , Imageamento por Ressonância Magnética/métodos , Edema/diagnóstico por imagem , Edema/patologia
9.
Cancer Cell Int ; 21(1): 585, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717647

RESUMO

BACKGROUND: Profound heterogeneity in prognosis has been observed in colorectal cancer (CRC) patients with intermediate levels of disease (stage II-III), advocating the identification of valuable biomarkers that could improve the prognostic stratification. This study aims to develop a deep learning-based pipeline for fully automatic quantification of immune infiltration within the stroma region on immunohistochemical (IHC) whole-slide images (WSIs) and further analyze its prognostic value in CRC. METHODS: Patients from two independent cohorts were divided into three groups: the development group (N = 200), the internal (N = 134), and the external validation group (N = 90). We trained a convolutional neural network for tissue classification of CD3 and CD8 stained WSIs. A scoring system, named stroma-immune score, was established by quantifying the density of CD3+ and CD8+ T-cells infiltration in the stroma region. RESULTS: Patients with higher stroma-immune scores had much longer survival. In the development group, 5-year survival rates of the low and high scores were 55.7% and 80.8% (hazard ratio [HR] for high vs. low 0.39, 95% confidence interval [CI] 0.24-0.63, P < 0.001). These results were confirmed in the internal and external validation groups with 5-year survival rates of low and high scores were 57.1% and 78.8%, 63.9% and 88.9%, respectively (internal: HR for high vs. low 0.49, 95% CI 0.28-0.88, P = 0.017; external: HR for high vs. low 0.35, 95% CI 0.15-0.83, P = 0.018). The combination of stroma-immune score and tumor-node-metastasis (TNM) stage showed better discrimination ability for survival prediction than using the TNM stage alone. CONCLUSIONS: We proposed a stroma-immune score via a deep learning-based pipeline to quantify CD3+ and CD8+ T-cells densities within the stroma region on WSIs of CRC and further predict survival.

10.
Chin J Cancer Res ; 33(3): 379-390, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34321834

RESUMO

OBJECTIVE: The Immunoscore method has proved fruitful for predicting prognosis in patients with colon cancer. However, there is still room for improvement in this scoring method to achieve further advances in its clinical translation. This study aimed to develop and validate a modified Immunoscore (IS-mod) system for predicting overall survival (OS) in patients with stage I-III colon cancer. METHODS: The IS-mod was proposed by counting CD3+ and CD8+ immune cells in regions of the tumor core and its invasive margin by drawing two lines of interest. A discovery cohort (N=212) and validation cohort (N=103) from two centers were used to evaluate the prognostic value of the IS-mod. RESULTS: In the discovery cohort, 5-year survival rates were 88.6% in the high IS-mod group and 60.7% in the low IS-mod group. Multivariate analysis confirmed that the IS-mod was an independent prognostic factor for OS [adjusted hazard ratio (HR)=0.36, 95% confidence interval (95% CI): 0.20-0.63]. With less annotation and computation cost, the IS-mod achieved performance comparable to that of the Immunoscore-like (IS-like) system (C-index, 0.676 vs. 0.661, P=0.231). The 2-category IS-mod using 47.5% as the threshold had a better prognostic value than that using a fixed threshold of 25% (C-index, 0.653 vs. 0.573, P=0.004). Similar results were confirmed in the validation cohort. CONCLUSIONS: Our method simplifies the annotation and accelerates the calculation of Immunoscore method, thus making it easier for clinical implementation. The IS-mod achieved comparable prognostic performance when compared to the IS-like system in both cohorts. Besides, we further found that even with a small reference set (N≥120), the IS-mod still demonstrated a stable prognostic value. This finding may inspire other institutions to develop a local reference set of an IS-mod system for more accurate risk stratification of colon cancer.

13.
Microb Pathog ; 95: 216-223, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27038844

RESUMO

Edwardsiella tarda is a pathogen with a broad host range that infects both animals and humans. Eha is a new transcriptional regulator identified in ET13, which is involved in the bacterial hemolytic activity. This study explored the effect of the Eha in the pathogenesis of E. tarda and the transcriptional regulation of the bacterial virulence genes (eseC, fliC, pagC and fimA). Our results found that the virulence of the eha mutant was 2.5-fold less than the one of its wild ET13 by LD50 in a murine model of i.p. infection, and the bacterial loads of the mutant displayed a different profile from the one of the wild strain. Most significantly, the mice infected with the mutant have greatly reduced acute inflammation in the liver, spleen and kidney compared to the ones infected with the wild. We further demonstrated that eseC, fliC and pagC were regulated directly by the Eha with qRT-PCR and ß-Galactosidase assay, but fimA wasn't done. The promoter regions of the genes modulated and the cly gene reported before had been found to contain a common conserved motif by using software. In addition, we found that the wild strain was more toxic to RAW264.7 macrophages, and induced less the host cell apoptotic responses than the eha mutant did. Altogether, these data suggested that the Eha was required for the bacterial infection and the transcriptive regulation of the important virulence genes of E. tarda.


Assuntos
Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidade , Genes Reguladores , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Virulência/biossíntese , Animais , Carga Bacteriana , Sobrevivência Celular , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Técnicas de Inativação de Genes , Rim/patologia , Dose Letal Mediana , Fígado/patologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Baço/patologia , Fatores de Transcrição/genética , Virulência
14.
Gene ; 920: 148519, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703867

RESUMO

Epithelial-mesenchymal transition (EMT) plays a crucial role in regulating inflammatory responses and fibrosis formation. This study aims to explore the molecular mechanisms of EMT-related genes in Crohn's disease (CD) through bioinformatics methods and identify potential key biomarkers. In our research, we identified differentially expressed genes (DEGs) related to EMT based on the GSE52746 dataset and the gene set in the GeneCards database. Key genes were identified through Lasso-cox and Random Forest and validated using the external dataset GSE10616. Immune infiltration analysis showed that Lysophosphatidylcholine acyltransferase 1 (LPCAT1) was positively correlated with Neutrophils and Macrophages M1. The Gene Set Enrichment Analysis (GSEA) results for LPCAT1 showed associations with celladhesionmolecules and ECM receptor interaction. Additionally, a lncRNA-miRNA-mRNA ceRNA network was constructed. Finally, we validated that knocking down LPCAT1 could inhibit the release of inflammatory factors, EMT, and the elevation of fibrosis indices as well as the activation of NF-κB signaling pathway in LPS-induced HT-29 cells. LPCAT1 plays an important role in the occurrence and development of CD and may become a new biomarker.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Biomarcadores , Biologia Computacional , Doença de Crohn , Aprendizado de Máquina , Humanos , Doença de Crohn/genética , Biologia Computacional/métodos , Biomarcadores/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Transição Epitelial-Mesenquimal/genética , Células HT29 , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Transdução de Sinais/genética
15.
Int J Biol Macromol ; 262(Pt 1): 129921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309408

RESUMO

As a common complication of Crohn's disease (CD), the mechanism underlying CD intestinal fibrosis remains unclear. Studies have shown that epithelial-mesenchymal transition (EMT) is a key step in the development of intestinal fibrosis in CD. It is currently known that the long non-coding RNA (lncRNA) MSC-AS1 plays an important role in regulating the secretion of inflammatory mediators and EMT; however, its role in intestinal fibrosis remains unclear. MSC-AS1 was significantly upregulated in the CD intestinal tissue and intestinal tissue of mice treated with 2,4,6-trinitrobenzenesulfonic acid. Downregulation of its expression can inhibit EMT and alleviates intestinal fibrosis by regulating SNIP1. In addition, MSC-AS1 directly interacted with SENP1, blocking the deSUMOylation of SNIP1 and inhibiting its activity. Furthermore, we found that SENP1 enhanced the expression of SNIP1 and reduced intestinal fibrosis. In summary, MSC-AS1 regulates EMT through the SENP1/SNIP1 axis to promote fibrosis, and may be considered a potential molecular target for the treatment of CD and intestinal fibrosis.


Assuntos
Doença de Crohn , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Doença de Crohn/genética , Doença de Crohn/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sumoilação , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Fibrose
16.
Comput Biol Med ; 169: 107939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194781

RESUMO

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Diagnóstico por Computador , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Software , Processamento de Imagem Assistida por Computador
17.
Med Phys ; 50(1): 163-177, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35950367

RESUMO

BACKGROUND: Semisupervised strategy has been utilized to alleviate issues from segmentation applications due to challenges in collecting abundant annotated segmentation masks, which is an essential prerequisite for training high-performance 3D convolutional neural networks (CNNs) . PURPOSE: Existing semisupervised segmentation methods are mainly concerned with how to generate the pseudo labels with regularization but not evaluate the quality of the pseudo labels explicitly. To alleviate this problem, we offer a simple yet effective reciprocal learning strategy for semisupervised volumetric medical image segmentation, which generates more reliable pseudo labels for the unannotated data. METHODS: Our proposed reciprocal learning is achieved through a pair of networks, one as a teacher network and the other as a student network. The student network learns from pseudo labels generated by the teacher network. In addition, the teacher network autonomously optimizes its parameters based on the reciprocal feedback signals from the student's performance on the annotated images. The efficacy of the proposed method is evaluated on three medical image data sets, including 82 pancreas computed tomography (CT) scans (training/testing: 62/20), 100 left atrium gadolinium-enhanced magnetic resonance (MR) scans (training/testing: 80/20), and 200 breast cancer MR scans (training/testing: 68/132). The comparison methods include mean teacher (MT) model, uncertainty-aware MT (UA-MT) model, shape-aware adversarial network (SASSNet), and transformation-consistent self-ensembling model (TCSM). The evaluation metrics are Dice similarity coefficient (Dice), Jaccard index (Jaccard), 95% Hausdorff distance (95HD), and average surface distance (ASD). The Wilcoxon signed-rank test is used to conduct the statistical analyses. RESULTS: By utilizing 20% labeled data and 80% unlabeled data for training, our proposed method achieves an average Dice of 84.77%/90.46%/78.53%, Jaccard of 73.71%/82.67%/69.00%, ASD of 1.58/1.90/0.57, and 95HD of 6.24/5.97/4.34 on pancreas/left atrium/breast data sets, respectively. These results outperform several cutting-edge semisupervised approaches, showing the feasibility of our method for the challenging semisupervised segmentation applications. CONCLUSIONS: The proposed reciprocal learning strategy is a general semisupervised solution and has the potential to be applied for other 3D segmentation tasks.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X/métodos
18.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990227

RESUMO

Recent researches have uncovered that long non-coding RNAs (lncRNAs) are closely correlated with the development of different diseases, while biological functions and hidden molecular mechanisms of antisense lncRNAs in oesophageal squamous cell carcinoma (OSCC) remain unclear. Here, we identified upregulation of LINC01116 in RNA sequencing data, online database, and in OSCC and intraepithelial neoplasia (IEN) specimens. Functionally, LINC01116 facilitates OSCC advancement and metastasis in vitro and vivo. Mechanistically, elevated expression of LINC01116 in OSCC cells other than tumor stroma and cytoplasmic enables it to activate AGO1 expression via complementary binding with AGO1 mRNA to facilitate EMT process of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Bucais , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Bucais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Esofágicas/genética
19.
IEEE Trans Med Imaging ; 42(8): 2451-2461, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37027751

RESUMO

Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes. With the great success of the ten-year BraTS challenges as well as the advances of CNN and Transformer algorithms, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects. However, existing studies hardly consider how to fuse the multi-modality images in a reasonable manner. In this paper, we leverage the clinical knowledge of how radiologists diagnose brain tumors from multiple MRI modalities and propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS. Instead of directly concatenating all the modalities, we re-organize the input modalities by separating them into two groups according to the imaging principle of MRI. A dual-branch hybrid encoder with the proposed modality-correlated cross-attention block (MCCA) is designed to extract the multi-modality image features. The proposed model inherits the strengths from both Transformer and CNN with the local feature representation ability for precise lesion boundaries and long-range feature extraction for 3D volumetric images. To bridge the gap between Transformer and CNN features, we propose a Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the proposed model with six CNN-based models and six transformer-based models on the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the proposed model achieves state-of-the-art brain tumor segmentation performance compared with all the competitors.


Assuntos
Neoplasias Encefálicas , Insuficiência Renal Crônica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo , Algoritmos , Calibragem , Processamento de Imagem Assistida por Computador
20.
IEEE Trans Med Imaging ; 42(6): 1696-1706, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018705

RESUMO

Ultrasonography is an important routine examination for breast cancer diagnosis, due to its non-invasive, radiation-free and low-cost properties. However, the diagnostic accuracy of breast cancer is still limited due to its inherent limitations. Then, a precise diagnose using breast ultrasound (BUS) image would be significant useful. Many learning-based computer-aided diagnostic methods have been proposed to achieve breast cancer diagnosis/lesion classification. However, most of them require a pre-define region of interest (ROI) and then classify the lesion inside the ROI. Conventional classification backbones, such as VGG16 and ResNet50, can achieve promising classification results with no ROI requirement. But these models lack interpretability, thus restricting their use in clinical practice. In this study, we propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations. We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers, and propose a HoVer-Transformer to formulate this prior knowledge. The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically. We conduct and release an open dataset GDPH&SYSUCC for breast cancer diagnosis in BUS. The proposed model is evaluated in three datasets by comparing with four CNN-based models and three vision transformer models via five-fold cross validation. It achieves state-of-the-art classification performance (GDPH&SYSUCC AUC: 0.924, ACC: 0.893, Spec: 0.836, Sens: 0.926) with the best model interpretability. In the meanwhile, our proposed model outperforms two senior sonographers on the breast cancer diagnosis when only one BUS image is given (GDPH&SYSUCC-AUC ours: 0.924 vs. reader1: 0.825 vs. reader2: 0.820).


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Ultrassonografia , Ultrassonografia Mamária , Diagnóstico por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA