Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386704

RESUMO

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte Proteico , Transporte Biológico , Proteólise , Osmorregulação , Trocadores de Sódio-Hidrogênio/genética , Proteínas de Arabidopsis/genética
2.
Plant Cell ; 35(8): 2910-2928, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195876

RESUMO

The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
3.
Plant J ; 113(6): 1122-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582168

RESUMO

High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
4.
Plant Cell Rep ; 43(4): 88, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461436

RESUMO

KEY MESSAGE: The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Sementes/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
5.
Plant Cell ; 32(11): 3535-3558, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938753

RESUMO

Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.


Assuntos
Metilação de DNA , Oryza/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant Cell Rep ; 43(1): 9, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133824

RESUMO

KEY MESSAGE: A novel function of plasma membrane-localized H+-ATPase, OsAHA3, was identified in rice, which is involved in saline-alkaline tolerance and specifically responds to high pH during saline-alkaline stress. Saline-alkaline stress causes serious damage to crop production on irrigated land. Plants suffer more severe damage under saline-alkaline stress than under salinity stress alone. Plasma membrane-localized proton (H+) pump (H+-ATPase) is an important enzyme that controls plant growth and development by catalyzing H+ efflux and enabling effective charge balance. Many studies about the role of plasma membrane H+-ATPases in saline-alkaline stress tolerance have been reported in Arabidopsis, especially on the AtAHA2 (Arabidopsis thaliana H+-ATPase 2) gene; however, whether and how plasma membrane H+-ATPases play a role in saline-alkaline stress tolerance in rice remain unknown. Here, using the activation-tagged rice mutant pool, we found that the plasma membrane-localized H+-ATPase OsAHA3 (Oryza sativa autoinhibited H+-ATPase 3) is involved in saline-alkaline stress tolerance. Activation-tagged line 29 (AC29) was identified as a loss-of-function mutant of OsAHA3 and showed more severe growth retardation under saline-alkaline stress with high pH than under salinity stress. Moreover, osaha3 loss-of-function mutants generated by CRISPR/Cas9 system exhibited saline-alkaline stress sensitive phenotypes; staining of leaves with nitrotetrazolium blue chloride (NBT) and diaminobenzidine (DAB) revealed more reactive oxygen species (ROS) accumulation in osaha3 mutants. OsAHA3-overexpressing plants showed increased saline-alkaline stress tolerance than wild-type plants. Tissue-specific expression analysis revealed high expression level of OsAHA3 in leaf, sheath, glume, and panicle. Overall, our results revealed a novel function of plasma membrane-localized H+-ATPase, OsAHA3, which is involved in saline-alkaline stress tolerance and specifically responds to high pH.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Estresse Fisiológico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/metabolismo , Tolerância ao Sal/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
7.
Plant Cell Rep ; 43(1): 17, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145426

RESUMO

KEY MESSAGE: Autophagy receptor OsNBR1 modulates salt stress tolerance by affecting ROS accumulation in rice. The NBR1 (next to BRCA1 gene 1), as important selective receptors, whose functions have been reported in animals and plants. Although the function of NBR1 responses to abiotic stress has mostly been investigated in Arabidopsis thaliana, the role of NBR1 under salt stress conditions remains unclear in rice (Oryza sativa). In this study, by screening the previously generated activation-tagged line, we identified a mutant, activation tagging 10 (AC10), which exhibited salt stress-sensitive phenotypes. TAIL-PCR (thermal asymmetric interlaced PCR) showed that the AC10 line carried a loss-of-function mutation in the OsNBR1 gene. OsNBR1 was found to be a positive regulator of salt stress tolerance and was localized in aggregates. A loss-of-function mutation in OsNBR1 increased salt stress sensitivity, whereas overexpression of OsNBR1 enhanced salt stress resistance. The osnbr1 mutants showed higher ROS (reactive oxygen species) production, whereas the OsNBR1 overexpression (OsNBR1OE) lines showed lower ROS production, than Kitaake plants under normal and salt stress conditions. Furthermore, RNA-seq analysis revealed that expression of OsRBOH9 (respiratory burst oxidase homologue) was increased in osnbr1 mutants, resulting in increased ROS accumulation in osnbr1 mutants. Together our results established that OsNBR1 responds to salt stress by influencing accumulation of ROS rather than by regulating transport of Na+ and K+ in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Animais , Oryza/genética , Espécies Reativas de Oxigênio , Estresse Salino/genética , Tolerância ao Sal/genética , Autofagia , Proteínas de Transporte
8.
J Integr Plant Biol ; 65(1): 265-279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36349953

RESUMO

The salinization of irrigated land affects agricultural productivity. HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER 1;5 (OsHKT1;5)-dependent sodium (Na+ ) transport is a key salt tolerance mechanism during rice growth and development. Using a previously generated high-throughput activation tagging-based T-DNA insertion mutant pool, we isolated a mutant exhibiting salt stress-sensitive phenotype, caused by a reduction in OsHKT1;5 transcripts. The salt stress-sensitive phenotype of this mutant results from the loss of function of OsDNAJ15, which encodes plasma membrane-localized heat shock protein 40 (Hsp40). osdnaj15 loss-of-function mutants show decreased plant height, increased leaf angle, and reduced grain number caused by shorter panicle length and fewer branches. On the other h'and, OsDNAJ15-overexpression plants showed salt stress-tolerant phenotypes. Intriguingly, salt stress facilitates the nuclear relocation of OsDNAJ15 so that it can interact with OsBAG4, and OsDNAJ15 and OsBAG4 synergistically facilitate the DNA-binding activity of OsMYB106 to positively regulate the expression of OsHKT1;5. Overall, our results reveal a novel function of plasma membrane-localized Hsp40 protein in modulating, alongside chaperon regulator OsBAG4, transcriptional regulation under salinity stress tolerance.


Assuntos
Proteínas de Choque Térmico HSP40 , Oryza , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Estresse Salino/genética , Chaperonas Moleculares/metabolismo , Membrana Celular/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
9.
J Integr Plant Biol ; 64(12): 2252-2274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149776

RESUMO

DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.


Assuntos
Metilação de DNA , Código das Histonas , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Produtos Agrícolas/genética
10.
J Integr Plant Biol ; 64(6): 1168-1180, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394700

RESUMO

The glucose sensor HEXOKINASE1 (HXK1) integrates myriad external and internal signals to regulate gene expression and development in Arabidopsis thaliana. However, how HXK1 mediates glucose signaling in the nucleus remains unclear. Here, using immunoprecipitation-coupled mass spectrometry, we show that two catalytic subunits of Polycomb Repressive Complex 2, SWINGER (SWN) and CURLY LEAF (CLF), directly interact with catalytically active HXK1 and its inactive forms (HXK1G104D and HXK1S177A ) via their evolutionarily conserved SANT domains. HXK1, CLF, and SWN target common glucose-responsive genes to regulate glucose signaling, as revealed by RNA sequencing. The glucose-insensitive phenotypes of the Arabidopsis swn-1 and clf-50 mutants were similar to that of hxk1, and genetic analysis revealed that CLF, SWN, and HXK1 function in the same genetic pathway. Intriguingly, HXK1 is required for CLF- and SWN-mediated histone H3 lysine 27 (H3K27me3) deposition and glucose-mediated gene repression. Moreover, CLF and SWN affect the recruitment of HXK1 to its target chromatin. These findings support a model in which HXK1 and epigenetic modifiers form a nuclear complex to cooperatively mediate glucose signaling, thereby affecting the histone modification and expression of glucose-regulated genes in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Proteínas de Homeodomínio/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Biotechnol J ; 19(12): 2576-2588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416090

RESUMO

To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNA-seq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na+ -selective transporter that maintains K+ /Na+ homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activation-tagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances saline-alkaline stress tolerance in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Domínios PR-SET , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Estresse Fisiológico/genética
12.
New Phytol ; 230(2): 567-584, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423315

RESUMO

Abscisic acid (ABA) plays a crucial role in the adaptation of young seedlings to environmental stresses. However, the role of epigenetic components and core transcriptional machineries in the effect of ABA on seed germination and seedling growth remain unclear. Here, we show that a histone 3 lysine 4 (H3K4) demethylase, JMJ17, regulates the expression of ABA-responsive genes during seed germination and seedling growth. Using comparative interactomics, WRKY40, a central transcriptional repressor in ABA signaling, was shown to interact with JMJ17. WRKY40 facilitates the recruitment of JMJ17 to the ABI5 chromatin, which removes gene activation marks (H3K4me3) from the ABI5 chromatin, thereby repressing its expression. Additionally, WRKY40 represses the transcriptional activation activity of HY5, which can activate ABI5 expression by directly binding to its promoter. An increase in ABA concentrations decreases the affinity of WRKY40 for the ABI5 promoter. Thus, WRKY40 and JMJ17 are released from the ABI5 chromatin, activating HY5. The accumulated ABI5 protein further shows heteromeric interaction with HY5, and thus synergistically activates its own expression. Our findings reveal a novel transcriptional switch, composed of JMJ17-WRKY40 and HY5-ABI5 modules, which regulates the ABA response during seed germination and seedling development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
13.
Plant Biotechnol J ; 18(1): 172-184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31161713

RESUMO

Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss-of-function osmdh1 mutant displaying salt stress-tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1-GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress-sensitive phenotype. Liquid chromatography-mass spectrometry (LC-MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress-induced pyridoxine accumulation. Furthermore, genome-wide RNA-sequencing (RNA-seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.


Assuntos
Malato Desidrogenase/fisiologia , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Vitamina B 6/análise , Regulação da Expressão Gênica de Plantas , NAD , Oryza/química , Plantas Geneticamente Modificadas , Cloreto de Sódio
14.
New Phytol ; 228(5): 1591-1610, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621388

RESUMO

Reactive oxygen species (ROS) act as important secondary messengers in abscisic acid (ABA) signaling and induce stomatal closure under dehydration stress. The breast cancer susceptibility gene 1 (BRCA1), an important tumor suppressor in animals, functions primarily in the maintenance of genome integrity in animals and plants. However, whether and how the plant BRCA1 regulates intracellular ROS homeostasis in guard cells under dehydration stress remains unknown. Here, we found that Arabidopsis atbrca1 loss-of-function mutants showed dehydration stress tolerance. This stress tolerant phenotype of atbrca1 was a result of ABA- and ROS-induced stomatal closure, which was enhanced in atbrca1 mutants compared with the wild-type. AtBRCA1 downregulated the expression of ROS-responsive and marker genes. Notably, these genes were also the targets of the AP2/ERF transcriptional activator RRTF1/ERF109. Under normal conditions, AtBRCA1 physically interacted with RRTF1 and inhibited its binding to the GCC-box-like sequence in target gene promoters. Under dehydration stress, the expression of AtBRCA1 was dramatically reduced and that of RRTF1 was activated, thus inducing the expression of ROS-responsive genes. Overall, our study reveals a novel molecular function of AtBRCA1 in the transcriptional regulation of intracellular ROS homeostasis under dehydration stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteína BRCA1 , Desidratação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Plant Physiol ; 179(4): 1844-1860, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723180

RESUMO

Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes; however, whether and how these transcription factors modulate the response to abscisic acid (ABA) remain unknown. In this study, we used a glk1 glk2 double mutant to examine the role of GLK1/2 in the ABA response. The glk1 glk2 double mutant displayed ABA-hypersensitive phenotypes during seed germination and seedling development and an osmotic stress-resistant phenotype during seedling development. Genome-wide RNA sequencing analysis of the glk1 glk2 double mutant revealed that GLK1/2 regulate several ABA-responsive genes, including WRKY40, in the presence of ABA. Chromatin immunoprecipitation and gel retardation assays showed that GLK1/2 directly associate with the WRKY40 promoter via the recognition of a consensus sequence. Additionally, RNA sequencing analysis of the glk1 glk2 double mutant and wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of downstream target genes in response to ABA. Furthermore, results of a genetic interaction test showed that the glk1 glk2 wrky40 triple mutant displayed similar ABA hypersensitivity to the wrky40 single mutant and the glk1 glk2 double mutant, while the glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we propose that the GLK1/2-WRKY40 transcription module plays a negative regulatory role in the ABA response.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pressão Osmótica , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
New Phytol ; 223(3): 1372-1387, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038749

RESUMO

Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Mutação com Perda de Função/genética , Metilação , Especificidade de Órgãos/genética , Fenótipo , Frações Subcelulares/metabolismo
17.
Plant Cell ; 28(10): 2528-2544, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697789

RESUMO

The phytohormone abscisic acid (ABA) plays crucial roles in various physiological processes, including responses to abiotic stresses, in plants. Recently, multiple ABA transporters were identified. The loss-of-function and gain-of-function mutants of these transporters show altered ABA sensitivity and stomata regulation, highlighting the importance of ABA transporters in ABA-mediated processes. However, how the activity of these transporters is regulated remains elusive. Here, we show that spatial regulation of ATP BINDING CASETTE G25 (ABCG25), an ABA exporter, is an important mechanism controlling its activity. ABCG25, as a soluble green fluorescent protein (sGFP) fusion, was subject to posttranslational regulation via clathrin-dependent and adaptor protein complex-2-dependent endocytosis followed by trafficking to the vacuole. The levels of sGFP:ABCG25 at the plasma membrane (PM) were regulated by abiotic stresses and exogenously applied ABA; PM-localized sGFP:ABCG25 decreased under abiotic stress conditions via activation of endocytosis in an ABA-independent manner, but increased upon application of exogenous ABA via activation of recycling from early endosomes in an ABA-dependent manner. Based on these findings, we propose that the spatial regulation of ABCG25 is an important component of the mechanism by which plants fine-tune cellular ABA levels according to cellular and environmental conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
18.
Plant Cell Rep ; 38(2): 131-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443733

RESUMO

KEY MESSAGE: Maize SWI3-type chromatin remodeler impacts alternative splicing contexts in response to osmotic stress by altering nucleosome density and affecting transcriptional elongation rate. Alternative splicing (AS) is commonly found in higher eukaryotes and is an important posttranscriptional regulatory mechanism to generate transcript diversity. AS has been widely accepted as playing essential roles in different biological processes including growth, development, signal transduction and responses to biotic and abiotic stresses in plants. However, whether and how chromatin remodeling complex functions in AS in plant under osmotic stress remains unknown. Here, we show that a maize SWI3D protein, ZmCHB101, impacts AS contexts in response to osmotic stress. Genome-wide analysis of mRNA contexts in response to osmotic stress using ZmCHB101-RNAi lines reveals that ZmCHB101 impacts alternative splicing contexts of a subset of osmotic stress-responsive genes. Intriguingly, ZmCHB101-mediated regulation of gene expression and AS is largely uncoupled, pointing to diverse molecular functions of ZmCHB101 in transcriptional and posttranscriptional regulation. We further found ZmCHB101 impacts the alternative splicing contexts by influencing alteration of chromatin and histone modification status as well as transcriptional elongation rates mediated by RNA polymerase II. Taken together, our findings suggest a novel insight of how plant chromatin remodeling complex impacts AS under osmotic stress .


Assuntos
Processamento Alternativo/genética , Pressão Osmótica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Zea mays/fisiologia , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Montagem e Desmontagem da Cromatina , Éxons/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lisina/metabolismo , Metilação , Nucleossomos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase II/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
19.
Plant Mol Biol ; 98(6): 495-506, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30406469

RESUMO

KEY MESSAGE: Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucose/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Heme Oxigenase (Desciclizante)/genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética
20.
Plant Mol Biol ; 97(4-5): 451-465, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29956114

RESUMO

KEY MESSAGE: The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Montagem e Desmontagem da Cromatina , Secas , Nucleossomos/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA