Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Breed ; 44(4): 25, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516203

RESUMO

Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus Fijivirus in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (qMrdd2 and qMrdd8) have been previously identified. The resistance genes ZmGLK36 and ZmGDIα-hel have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, ZmGLK36 and ZmGDIα-hel were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85-98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01466-9.

2.
Plant Dis ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736149

RESUMO

Rice black-streaked dwarf virus is transmitted by small brown planthoppers, which causes maize rough dwarf disease and rice black-streaked dwarf disease. This virus leads to slow growth or death of the host plants. During the co-evolutionary arms race between viruses and plants, virus-derived small interfering RNAs challenge the plant's defense response and inhibit host immunity through the RNA silencing system. However, it is currently unknown if rice black-streaked dwarf virus can produce the same small interfering RNAs to mediate the RNA silencing in different infected species. In this study, four small RNA libraries and four degradome libraries were constructed by extracting total RNAs from the leaves of the maize (Zea mays) inbred line B73 and japonica rice (Oryza sativa) variety Nipponbare exposed to feeding by viruliferous and non-viruliferous small brown planthoppers. We analyzed the characteristics of small RNAs and explored virus-derived small interfering RNAs in small RNA libraries through high-throughput sequencing. On analyzing the characteristics of small RNA, we noted that the size distributions of small RNAs were mainly 24-nt (19.74%-62.00%), whereas those of virus-derived small interfering RNAs were mostly 21-nt (41.06%-41.87%) and 22-nt (39.72%-42.26%). The 5'-terminal nucleotides of virus-derived small interfering RNAs tended to be adenine or uracil. Exploring the distribution of virus-derived small interfering RNAs hot spots on the viral genome segments revealed that the frequency of hot spots in B73 was higher than those in Nipponbare. Meanwhile, hotspots in the S9 and S10 virus genome segments were distributed similarly in both hosts. In addition, the target genes of small RNA were explored by degradome sequencing. Analyses of the regulatory pathway of these target genes unveiled that viral infection affected the ribosome-related target genes in maize and target genes in metabolism and biosynthesis pathways in rice. Here, 562 and 703 virus-derived small interfering RNAs were separately obtained in maize and rice, and 73 virus-derived small interfering RNAs named as co-vsiRNAs were detected in both hosts. Stem-loop PCR and RT-qPCR confirmed that co-vsiRNA 3.1 and co-vsiRNA 3.5 derived from genome segment S3 simultaneously play a role in maize and rice and inhibited host gene expression. The study revealed that rice black-streaked dwarf virus can produce the same small interfering RNAs in different species and provides a new direction for developing the new antiviral strategies.

3.
Mol Plant Microbe Interact ; 36(1): 14-25, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251001

RESUMO

The gray leaf spots caused by Cercospora spp. severely affect the yield and quality of maize. However, the evolutionary relation and pathogenicity variation between species of the Cercospora genus is largely unknown. In this study, we constructed high-quality reference genomes by nanopore sequencing two Cercospora species, namely, C. zeae-maydis and C. zeina, with differing pathogenicity, collected from northeast (Liaoning [LN]) and southeast (Yunnan [YN]) China, respectively. The genome size of C. zeae-maydis-LN is 45.08 Mb, containing 10,839 annotated genes, whereas that of Cercospora zeina-YN is 42.18 Mb, containing 10,867 annotated genes, of which approximately 86.58% are common in the two species. The difference in their genome size is largely attributed to increased long terminal repeat retrotransposons of 3.8 Mb in total length in C. zeae-maydis-LN. There are 41 and 30 carbohydrate-binding gene subfamilies identified in C. zeae-maydis-LN and C. zeina-YN, respectively. A higher number of carbohydrate-binding families found in C. zeae-maydis-LN, and its unique CBM4, CBM37, and CBM66, in particular, may contribute to variation in pathogenicity between the two species, as the carbohydrate-binding genes are known to encode cell wall-degrading enzymes. Moreover, there are 114 and 107 effectors predicted, with 47 and 46 having unique potential pathogenicity in C. zeae-maydis-LN and C. zeina-YN, respectively. Of eight effectors randomly selected for pathogenic testing, five were found to inhibit cell apoptosis induced by Bcl-2-associated X. Taken together, our results provide genomic insights into variation in pathogenicity between C. zeae-maydis and C. zeina. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Cercospora , Zea mays/genética , Ascomicetos/genética , Virulência , China , Carboidratos
4.
Biochem Cell Biol ; 101(1): 112-124, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493392

RESUMO

Glioblastoma (GBM) is a WHO grade 4 tumor and is the most malignant form of glioma. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme involved in folate metabolism, has been reported to be highly expressed in several human tumors. However, little is known about the role of MTHFD2 in GBM. In this study, we aimed to explore the biological functions of MTHFD2 in GBM and identify the associated mechanisms. We performed experiments such as immunohistochemistry, Western blot, and transwell assays and found that MTHFD2 expression was lower in high-grade glioma than in low-grade glioma. Furthermore, a high expression of MTHFD2 was associated with a favorable prognosis, and MTHFD2 levels showed good prognostic accuracy for glioma patients. The overexpression of MTHFD2 could inhibit the migration, invasion, and proliferation of GBM cells, whereas its knockdown induced the opposite effect. Mechanistically, our findings revealed that MTHFD2 suppressed GBM progression independent of its enzymatic activity, likely by inducing cytoskeletal remodeling through the regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, thereby influencing GBM malignance. Collectively, these findings uncover a potential tumor-suppressor role of MTHFD2 in GBM cells. MTHFD2 may act as a promising diagnostic and therapeutic target for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação
5.
Proc Natl Acad Sci U S A ; 117(34): 20908-20919, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778598

RESUMO

Maintaining sufficient water transport during flowering is essential for proper organ growth, fertilization, and yield. Water deficits that coincide with flowering result in leaf wilting, necrosis, tassel browning, and sterility, a stress condition known as "tassel blasting." We identified a mutant, necrotic upper tips1 (nut1), that mimics tassel blasting and drought stress and reveals the genetic mechanisms underlying these processes. The nut1 phenotype is evident only after the floral transition, and the mutants have difficulty moving water as shown by dye uptake and movement assays. These defects are correlated with reduced protoxylem vessel thickness that indirectly affects metaxylem cell wall integrity and function in the mutant. nut1 is caused by an Ac transposon insertion into the coding region of a unique NAC transcription factor within the VND clade of Arabidopsis NUT1 localizes to the developing protoxylem of root, stem, and leaf sheath, but not metaxylem, and its expression is induced by flowering. NUT1 downstream target genes function in cell wall biosynthesis, apoptosis, and maintenance of xylem cell wall thickness and strength. These results show that maintaining protoxylem vessel integrity during periods of high water movement requires the expression of specialized, dynamically regulated transcription factors within the vasculature.


Assuntos
Termotolerância/genética , Xilema/metabolismo , Zea mays/metabolismo , Parede Celular/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Temperatura Alta , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Zea mays/genética
6.
Plant Dis ; 106(1): 65-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34132596

RESUMO

Maize rough dwarf disease (MRDD) is caused by a virus and seriously affects maize quality and yield worldwide. MRDD can be most effectively controlled with disease-resistant hybrids of corn. Here, MRDD-resistant (Qi319) and -susceptible (Ye478) parental inbred maize lines and their 314 recombinant inbred lines (RILs) that were derived from a cross between them were evaluated across three environments. A stable resistance QTL, qMrdd2, was identified and mapped using best linear unbiased prediction (BLUP) values to a 0.55-Mb region between the markers MK807 and MK811 on chromosome 2 (B73 RefGen_v3) and was found to explain 8.6 to 11.0% of the total phenotypic variance in MRDD resistance. We validated the effect of qMrdd2 using a chromosome segment substitution line (CSSL) that was derived from a cross between maize inbred Qi319 as the MRDD resistance donor and Ye478 as the recipient. Disease severity index of the CSSL haplotype II harboring qMrdd2 was significantly lower than that of the susceptible parent Ye478. Subsequently, we fine-mapped qMrdd2 to a 315-kb region flanked by the markers RD81 and RD87, thus testing recombinant-derived progeny using selfed backcrossed families. In this study, we identified a novel QTL for MRDD resistance by combining the RIL and CSSL populations, thus providing important genetic information that can be used for breeding MRDD-resistant varieties of maize.


Assuntos
Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Resistência à Doença/genética , Haplótipos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Zea mays/genética , Zea mays/virologia
7.
Med Sci Monit ; 26: e921947, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484805

RESUMO

BACKGROUND The extent of glioma resection influences the overall survival (OS) and progression-free survival (PFS). Ferroptosis is a newly recognized type of cell death, which may be associated with low-grade glioma border detection and OS. This study is assessed an optimized ferroptosis gene panel for glioma treatment. MATERIAL AND METHODS We obtained 45 reports on ferroptosis-related proteins in PubMed and conducted a statistical test of the patients' overall survival (OS) in the TCGA GBMLGG and CGGA databases. The statistically significant genes were screened for an optimal panel, followed by GO and KEGG analysis and evaluated its correlation with known prognostic factors of glioma, including IDH1 mutation, methylated MGMT, tumor purity, 1p/19q LOH, and methionine cycle. RESULTS Eight genes panel (ALOX5, CISD1, FTL, CD44, FANCD2, NFE2L2, SLC1A5, and GOT1) were highly related to OS (P<0.001) and PFS (P<0.001) of low-grade glioma (LGG) patients, out of which 6 genes (ALOX5, CISD1, CD44, FTL, FANCD2, and SLC1A5) were correlated with IDH1_p.R132H (P<0.001) and 5 genes (ALOX5, CD44, FTL, NFE2L2, SLC1A5) showed a correlation with tumor purity (P<0.001). Five genes (ALOX5, CD44, CISD1, FTL, and SLC1A5) were associated with methylated MGMT (P<0.001), out of which 6 genes (ALOX5, CD44, FANCD2, NFE2L2, SLC1A5, and GOT1) had significantly different expression in healthy brain tissue vs. glioma (P<0.001). CONCLUSIONS Our panel of 8 ferroptosis genes showed a significant correlation with the diagnostic and prognostic factors of low-grade glioma and can be applied in neuroradiology and surgery.


Assuntos
Neoplasias Encefálicas/genética , Ferroptose/genética , Glioma/genética , Adulto , Sistema ASC de Transporte de Aminoácidos/genética , Apoferritinas/genética , Araquidonato 5-Lipoxigenase/genética , Aspartato Aminotransferase Citoplasmática/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Metilação de DNA , Bases de Dados Genéticas , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Feminino , Ferroptose/fisiologia , Glioma/diagnóstico , Glioma/mortalidade , Glioma/patologia , Humanos , Receptores de Hialuronatos/genética , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Proteínas Mitocondriais/genética , Mutação , Fator 2 Relacionado a NF-E2/genética , Prognóstico , Intervalo Livre de Progressão , Regiões Promotoras Genéticas
8.
Clin Neuropathol ; 39(2): 86-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31670648

RESUMO

Solitary fibrous tumor (SFT) is a benign mesenchymal neoplasm occurring anywhere in the body, such as the visceral pleura, while it is extremely rare in the central nervous system, especially within the spinal cord. Here, we present a case of recurrent spinal SFT in a 44-year-old woman who had the tumor resected 5 years before. This time, her magnetic resonance imaging revealed an intradural tumor at the level of C6-7. A secondary resection was performed completely, and the patient's neurological conditions recovered fully after resection. Histological and immunohistochemical findings revealed an SFT. Although rare, the preferred treatment for recurrent tumor in SFT is surgery, and postoperative follow-up is necessary for early detection of tumor progression.


Assuntos
Recidiva Local de Neoplasia/patologia , Tumores Fibrosos Solitários/patologia , Neoplasias da Medula Espinal/patologia , Adulto , Feminino , Humanos , Tumores Fibrosos Solitários/cirurgia , Neoplasias da Medula Espinal/cirurgia
9.
Breed Sci ; 70(2): 183-192, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32523400

RESUMO

Maize rough dwarf disease (MRDD) is caused by viruses in the Fijivirus genus in the family Reoviridae. MRDD resistance can be improved by a combination of marker-assisted selection (MAS) and conventional breeding strategies. In our previous study, we fine-mapped a major QTL qMrdd8 and developed the functional Indel marker IDP25K. In the present study, qMrdd8 from the donor parent X178 was introgressed into elite inbred lines derived from the three corn heterotic groups using multi-generation backcrossing and MAS. Recipient lines included Huangzao4, Chang7-2, Ye478, Zheng58, Zhonghuang68, B73, and Ji846. Markers used for foreground selection included IDRQ4, IDRQ47, IDP25K, and IDP27K. Background selection was carried out in the BC3 or BC4 using 107 SSR markers to select lines with the highest rate of recovery of the particular recurrent parent genome. Plants from BC4F2 and BC3F2 that carried the shortest qMrdd8 interval from X178 and those with the highest rate of recovery of the recurrent parent genome were then selected to create converted homozygous inbred lines. In 2017, seven converted inbred lines and five hybrids exhibited enhanced resistance to MRDD, while other agronomic traits were not affected under nonpathogenic stress conditions. Thus, the MRDD resistance allele at the qMrdd8 locus, or IDP25K, should be valuable for maize breeding programs in China.

10.
Plant Dis ; 104(7): 1918-1924, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396052

RESUMO

Southern corn rust (SCR), an airborne disease caused by Puccinia polysora, can severely reduce the yield of maize (Zea mays L.). Using recombinant inbred lines (RILs) derived from a cross between susceptible inbred line Ye478 and resistant Qi319 in combination with their high-density genetic map, we located five quantitative trait loci (QTLs) against SCR, designated as qSCR3.04, qSCR5.07, qSCR6.01, qSCR9.03, and qSCR10.01, on chromosomes 3, 5, 6, 9, and 10, respectively. Each QTL could explain 2.84 to 24.15% of the total phenotypic variation. qSCR6.01, detected on chromosome 6, with the highest effect value, accounting for 17.99, 23.47, and 24.15% of total phenotypic variation in two environments and best linear unbiased prediction, was a stably major resistance QTL. The common confidence interval for qSCR6.01 was 2.95 Mb based on the B73 RefGen_v3 sequence. The chromosome segment substitution lines (CSSLs) constructed with Qi319 as the donor parent and Ye478 as the recurrent parent were used to further verify qSCR6.01 resistance to SCR. The line CL183 harboring introgressed qSCR6.01 showed obvious resistance to SCR that was distinctly different from that of Ye478 (P = 0.0038). Further mapping of qSCR6.01 revealed that the resistance QTL was linked to insertion-deletion markers Y6q77 and Y6q79, with physical locations of 77.6 and 79.6 Mb, respectively, on chromosome 6. Different from previous major genes or QTLs against SCR on chromosome 10, qSCR6.01 was a newly identified major QTL resistance to SCR on chromosome 6 for the first time. Using RIL and CSSL populations in combination, the SCR-resistance QTL research can be dissected effectively, which provided important gene resource and genetic information for breeding resistant varieties.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Mapeamento Cromossômico , Doenças das Plantas , Zea mays/genética
11.
Opt Express ; 25(12): 13602-13616, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788903

RESUMO

This paper reports the development of a dual-color light sheet fluorescence imaging flow cytometer exclusively designed for rapid phytoplankton analysis. By simultaneously exciting chlorophyll and phycoerythrin fluorescence, the system is enabled to discriminate phycoerythrin-containing and phycoerythrin-lacking phytoplankton groups through simultaneous two-channel spectral imaging-in-flow. It is demonstrated the system has good sensitivity and resolution to detect picophytoplankton down to the size of ~1µm, high throughput of 1.3 × 105cells/s and 5 × 103cells/s at 100µL/min and 3mL/min volume flow rates for cultured picophytoplankton and nanophytoplankton detection, respectively, and a broad imaging range from ~1µm up to 300µm covering most marine phytoplankton cell sizes with just one 40 × objective. The simultaneous realization of high resolution, high sensitivity and high throughput with spectral resolving power of the system is expected to promote the technology towards more practical applications that demand automated phytoplankton analysis.


Assuntos
Clorofila/análise , Citometria de Fluxo/métodos , Fitoplâncton , Fluorescência
12.
Opt Express ; 25(17): 20033, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041688

RESUMO

The referenced article [Opt. Express25, 13602 (2017)]10.1364/OE.25.013602 has been retracted.

13.
J Exp Bot ; 67(15): 4593-609, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27493226

RESUMO

Maize rough dwarf disease (MRDD) is a viral infection that results in heavy yield losses in maize worldwide, particularly in the summer maize-growing regions of China. MRDD is caused by the Rice black-streaked dwarf virus (RBSDV). In the present study, analyses of microRNAs (miRNAs), the degradome, and transcriptome sequences were used to elucidate the RBSDV-responsive pathway(s) in maize. Genomic analysis indicated that the expression of three non-conserved and 28 conserved miRNAs, representing 17 known miRNA families and 14 novel miRNAs, were significantly altered in response to RBSDV when maize was inoculated at the V3 (third leaf) stage. A total of 99 target transcripts from 48 genes of 10 known miRNAs were found to be responsive to RBSDV infection. The annotations of these target genes include a SQUAMOSA promoter binding (SPB) protein, a P450 reductase, an oxidoreductase, and a ubiquitin-related gene, among others. Characterization of the entire transcriptome suggested that a total of 28 and 1085 differentially expressed genes (DEGs) were detected at 1.5 and 3.0 d, respectively, after artificial inoculation with RBSDV. The expression patterns of cell wall- and chloroplast-related genes, and disease resistance- and stress-related genes changed significantly in response to RBSDV infection. The negatively regulated genes GRMZM2G069316 and GRMZM2G031169, which are the target genes for miR169i-p5 and miR8155, were identified as a nucleolin and a NAD(P)-binding Rossmann-fold superfamily protein in maize, respectively. The gene ontology term GO:0003824, including GRMZM2G031169 and other 51 DEGs, was designated as responsive to RBSDV.


Assuntos
Doenças das Plantas/virologia , Reoviridae/fisiologia , Zea mays/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Zea mays/genética , Zea mays/metabolismo
14.
PLoS One ; 19(5): e0301134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743645

RESUMO

Land cover classification (LCC) is of paramount importance for assessing environmental changes in remote sensing images (RSIs) as it involves assigning categorical labels to ground objects. The growing availability of multi-source RSIs presents an opportunity for intelligent LCC through semantic segmentation, offering a comprehensive understanding of ground objects. Nonetheless, the heterogeneous appearances of terrains and objects contribute to significant intra-class variance and inter-class similarity at various scales, adding complexity to this task. In response, we introduce SLMFNet, an innovative encoder-decoder segmentation network that adeptly addresses this challenge. To mitigate the sparse and imbalanced distribution of RSIs, we incorporate selective attention modules (SAMs) aimed at enhancing the distinguishability of learned representations by integrating contextual affinities within spatial and channel domains through a compact number of matrix operations. Precisely, the selective position attention module (SPAM) employs spatial pyramid pooling (SPP) to resample feature anchors and compute contextual affinities. In tandem, the selective channel attention module (SCAM) concentrates on capturing channel-wise affinity. Initially, feature maps are aggregated into fewer channels, followed by the generation of pairwise channel attention maps between the aggregated channels and all channels. To harness fine-grained details across multiple scales, we introduce a multi-level feature fusion decoder with data-dependent upsampling (MLFD) to meticulously recover and merge feature maps at diverse scales using a trainable projection matrix. Empirical results on the ISPRS Potsdam and DeepGlobe datasets underscore the superior performance of SLMFNet compared to various state-of-the-art methods. Ablation studies affirm the efficacy and precision of SAMs in the proposed model.


Assuntos
Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
15.
Cell Signal ; 109: 110789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392861

RESUMO

Glioblastoma (GBM) is a malignant tumor characterized by poor prognosis and low overall survival (OS) rate. Identification of novel biological markers for the diagnosis and treatment of GBM is crucial to developing interventions to improve patient survival. GNA13, a member of the G12 family, has been reported to play important roles in a variety of biological processes involved in tumorigenesis and development. However, its role in GBM is currently unknown. Here, we explored the expression patterns and functions of GNA13 in GBM, as wells its impact on metastasis process. Results showed that GNA13 was downregulated in GBM tissues and correlated with poor prognosis of GBM. Downregulation of GNA13 promoted the migration, invasion and proliferation of GBM cells; whereas its overexpression abolished these effects. Western blots revealed that GNA13 knockdown and overexpression upregulated and inhibited the phosphorylation of ERKs, respectively. Moreover, GNA13 was the upstream of ERKs signaling to regulating ERKs phosphorylation level. Furthermore, U0126 alleviated the metastasis effect induced by GNA13 knockdown. Bioinformatics analyses and qRT-PCR experiments demonstrated that GNA13 could regulate FOXO3, a downstream signaling molecule of ERKs pathway. Overall, our results demonstrate that GNA13 expression is negatively correlated with GBM and can suppress tumor metastasis by inhibiting the ERKs signaling pathway and upregulating FOXO3 expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo
16.
Nat Plants ; 9(10): 1720-1733, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709955

RESUMO

Maize rough dwarf disease (MRDD), caused by maize rough dwarf virus (MRDV) or rice black-streaked dwarf virus (RBSDV), seriously threatens worldwide production of all major cereal crops, including maize, rice, wheat and barley. Here we report fine mapping and cloning of a previously reported major quantitative trait locus (QTL) (qMrdd2) for RBSDV resistance in maize. Subsequently, we show that qMrdd2 encodes a G2-like transcription factor named ZmGLK36 that promotes resistance to RBSDV by enhancing jasmonic acid (JA) biosynthesis and JA-mediated defence response. We identify a 26-bp indel located in the 5' UTR of ZmGLK36 that contributes to differential expression and resistance to RBSDV in maize inbred lines. Moreover, we show that ZmDBF2, an AP2/EREBP family transcription factor, directly binds to the 26-bp indel and represses ZmGLK36 expression. We further demonstrate that ZmGLK36 plays a conserved role in conferring resistance to RBSDV in rice and wheat using transgenic or marker-assisted breeding approaches. Our results provide insights into the molecular mechanisms of RBSDV resistance and effective strategies to breed RBSDV-resistant cereal crops.


Assuntos
Oryza , Vírus de Plantas , Grão Comestível/genética , Fatores de Transcrição/genética , Zea mays/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Doenças das Plantas/genética , Oryza/genética , Vírus de Plantas/genética
17.
Front Neurol ; 13: 1033385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686534

RESUMO

Background: Insulin resistance (IR) is involved in the pathogenesis of atherosclerosis. As a new indicator, the triglyceride-glucose (TyG) index has greater operability for the evaluation of insulin resistance. Previous studies have shown inconsistent results in evaluating the association between the TyG index and stroke incidence in people without stroke at baseline. Therefore, this study aimed to systematically assess this association through a meta-analysis. Methods: Cohort studies with the multivariate-adjusted hazard ratio (HR) association between the TyG index and stroke were obtained by searching the PubMed, Cochrane Library, and EMBASE databases before 16 December 2021. We pooled the adjusted HR along with 95% CI using a random-effects model. The primary outcome was stroke including ischemic and hemorrhagic stroke. We conducted subgroup analyses stratified by study design, ethnicity, characteristics of participants, weight of studies, and length of follow-up duration. Review Manager 5.3 and Stata 17 were used to perform the meta-analysis. Results: Eight cohort studies with 5,804,215 participants were included. The results showed that participants with the highest TyG index category at baseline compared to those with the lowest TyG index category were independently associated with a higher risk of stroke (HR: 1.26, 95% CI: 1.24-1.29, I2 = 0%, P < 0.001). This finding was consistent with the results of the meta-analysis with the TyG index analyzed as a continuous variable (HR per each-unit increment of the TyG index: 1.13, 95% CI 1.09-1.18, I2 = 0%, P < 0.001). Subgroup analysis had no significant effects (for subgroup analysis, all P > 0.05). No significant heterogeneity was observed among the included cohort studies. Conclusion: A higher TyG index may be independently associated with a higher risk of stroke in individuals without stroke at baseline. The aforementioned findings need to be verified by a large-scale prospective cohort study to further clarify the underlying pathophysiological mechanism between the TyG index and stroke.

18.
Plant Physiol Biochem ; 170: 160-170, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34891072

RESUMO

Abiotic stress is the main factor that severely limits crop growth and yield. NAC (NAM, ATAF1/2 and CUC2) transcription factors play an important role in dealing with various abiotic stresses. Here, we discovered the ZmSNAC13 gene in drought-tolerant maize lines by RNA-seq analysis and verified its function in Arabidopsis thaliana. First, its gene structure showed that ZmSNAC13 had a typical NAC domain and a highly variable C-terminal. There were multiple cis-acting elements related to stress in its promoter region. Overexpression of ZmSNAC13 resulted in enhanced tolerances to drought and salt stresses in Arabidopsis, characterized by a reduction in the water loss rate, a sustained effective photosynthesis rate, and increased cell membrane stability in leaves under drought conditions. Transcriptome analysis showed that a large number of differentially expressed genes regulated by overexpression of ZmSNAC13 were identified, and the main drought tolerance regulatory pathways involved were the ABA pathway and MAPK cascade signaling pathway. Overexpression of ZmSNAC13 promoted the expression of genes, such as PYL9 and DREB3, thereby enhancing tolerance to adverse environments. Adaptability, while restraining genes expression such as WRKY53 and MPK3, facilitates regulation of senescence in Arabidopsis and improves plant responses to adversity. Therefore, ZmSNAC13 is promising gene of interest for use in transgenic breeding to improve abiotic stress tolerance in crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Ann Palliat Med ; 10(4): 4472-4478, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33894726

RESUMO

BACKGROUND: The aim of the present study was to explore the clinical effect and to predict the prognosis of severe craniocerebral injury patients with decompressive craniectomy by combining transcranial Doppler (TCD) and invasive intracranial pressure (ICP). METHODS: A total of 60 severe craniocerebral injury patients with decompressive craniectomy, who were admitted to Shantou Central Hospital from June 2017 to March 2019, were enrolled in this retrospective study. Of these, 25 patients who had a Glasgow Coma Scale (GCS) score no greater 8 and no less than 6 underwent transcranial Doppler (TCD) before decompressive craniectomy, as well as ICP, after removing the skull and suturing the dura mater. The 60 patients were divided into 2 groups according to the following standards: (I) GCS score ≥8 on the 7th day postoperatively; (II) ICP continuously lower than 25 mmHg for the entire 7-day duration postoperatively; and (III) brain tissue consistently offset from the skull surface by 5 mm. The clinical outcome was determined based on the Glasgow Outcome Scale (GOS) 1, 3, and 6 months postoperatively. The TCD value, ICP, and prognosis were compared between the 2 groups. RESULTS: The average postoperative ICP <19 mmHg in the first 24 h, mean blood flow velocity >56.33 cm/s, end-diastolic blood flow velocity >40.28 cm/s, and resistance index <0.57 were statistically significant indicators to predict good prognosis . CONCLUSIONS: The use of TCD can predict the prognosis of severe craniocerebral injury patients.


Assuntos
Traumatismos Craniocerebrais , Craniectomia Descompressiva , Traumatismos Craniocerebrais/diagnóstico por imagem , Traumatismos Craniocerebrais/cirurgia , Humanos , Pressão Intracraniana , Estudos Retrospectivos , Crânio , Resultado do Tratamento
20.
Am J Transl Res ; 13(10): 11413-11426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786068

RESUMO

Temozolomide (TMZ), one of the few effective drugs used during adjuvant therapy, could effectively prolong the overall survival (OS) of glioma patients. In our previous study, the mRNA level of G Protein Subunit Alpha 13 (GNA13) was found to be inversely correlated with OS and was therefore identified as a potential biomarker for the prognosis of glioma. Henceforth, this study aims to identify the molecular mechanism of GNA13 in enhancing TMZ sensitization through bioinformatic analyses of GSE80729 and GSE43452 and other experiments. In glioma, overexpression of GNA13 downregulated PRKACA, which is a subunit of PKA, hence reducing phosphorylated RELA and MGMT. Since p-RELA and MGMT were proven to be closely associated with TMZ resistance, we therefore investigated whether thetwo signaling pathways, "GNA13/PRKACA/p-RELA", and "GNA13/PRKACA/MGMT", were involved in the molecular mechanism of GNA13 in TMZ sensitization. Our conclusion was that, GNA13 overexpression in glioma cells were more sensitive in TMZ treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA