Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644528

RESUMO

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Assuntos
Sequência Conservada , Desenvolvimento Embrionário/genética , Proteínas Quinases/metabolismo , Retroelementos/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Proliferação de Células , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mamíferos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo
2.
Cell ; 170(5): 1028-1043.e19, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841410

RESUMO

Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human ß-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Técnicas Genéticas , Elementos Reguladores de Transcrição , Animais , Biotinilação , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Endonucleases/genética , Elementos Facilitadores Genéticos , Humanos , Células K562 , Camundongos , RNA Guia de Cinetoplastídeos/metabolismo , Telômero/metabolismo , Globinas beta/genética
3.
Cell ; 153(5): 1134-48, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23664764

RESUMO

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Animais , Diferenciação Celular , Cromatina/metabolismo , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia
4.
Cell ; 135(5): 865-78, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041750

RESUMO

Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.


Assuntos
Neoplasias da Mama/metabolismo , Polaridade Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Animais/metabolismo , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose , Linhagem Celular Tumoral , Regulação para Baixo , Células Epiteliais/citologia , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
EMBO Rep ; 21(10): e49735, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32945124

RESUMO

Maintaining proteome health is important for cell survival. Nucleic acids possess the ability to prevent protein aggregation more efficiently than traditional chaperone proteins. In this study, we explore the sequence specificity of the chaperone activity of nucleic acids. Evaluating over 500 nucleic acid sequences' effects on protein aggregation, we show that the holdase chaperone effect of nucleic acids is sequence-dependent. G-Quadruplexes prevent protein aggregation via quadruplex:protein oligomerization. They also increase the folded protein level of a biosensor in E. coli. These observations contextualize recent reports of quadruplexes playing important roles in aggregation-related diseases, such as fragile X and amyotrophic lateral sclerosis (ALS), and provide evidence that nucleic acids have the ability to modulate the folding environment of E. coli.


Assuntos
Quadruplex G , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína
6.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955587

RESUMO

Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug-target affinity is crucial. The proposed model, the prediction of drug-target affinity using a convolution model with self-attention (CSatDTA), applies convolution-based self-attention mechanisms to the molecular drug and target sequences to predict drug-target affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations related to this aspect. The convolutional neural network (CNN) only works on a particular region of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively recent technique for capturing long-range interactions that has been used primarily in sequence modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous sequence-based or other approaches and has outstanding retention abilities.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos
7.
Brief Bioinform ; 19(3): 361-373, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025178

RESUMO

Genomic islands (GIs) that are associated with microbial adaptations and carry sequence patterns different from that of the host are sporadically distributed among closely related species. This bias can dominate the signal of interest in GI detection. However, variations still exist among the segments of the host, although no uniform standard exists regarding the best methods of discriminating GIs from the rest of the genome in terms of compositional bias. In the present work, we proposed a robust software, MTGIpick, which used regions with pattern bias showing multiscale difference levels to identify GIs from the host. MTGIpick can identify GIs from a single genome without annotated information of genomes or prior knowledge from other data sets. When real biological data were used, MTGIpick demonstrated better performance than existing methods, as well as revealed potential GIs with accurate sizes missed by existing methods because of a uniform standard. Software and supplementary are freely available at http://bioinfo.zstu.edu.cn/MTGI or https://github.com/bioinfo0706/MTGIpick.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Genômica/métodos , Software , Algoritmos , Anotação de Sequência Molecular
8.
Nucleic Acids Res ; 44(11): e106, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27060148

RESUMO

Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Epigênese Genética , Epigenômica , Sítios de Ligação , Diferenciação Celular/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Epigenômica/métodos , Histonas/metabolismo , Humanos , Reprodutibilidade dos Testes , Fatores de Transcrição
9.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607157

RESUMO

Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis.IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.


Assuntos
Cisteína/metabolismo , Escherichia coli/metabolismo , Salmonella enterica/metabolismo , Anaerobiose , Biotransformação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Salmonella enterica/genética , Salmonella enterica/crescimento & desenvolvimento , Homologia de Sequência
10.
RNA Biol ; 14(2): 259-274, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982722

RESUMO

MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , Oligonucleotídeos/genética , Interferência de RNA , RNA Mensageiro/genética , Pareamento de Bases , Sequência de Bases , Linhagem Celular , Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
Zhongguo Zhong Yao Za Zhi ; 40(2): 351-5, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26080572

RESUMO

To evaluate the clinical efficacy and safety of Qinghouyan lozenge in the treatment of acute pharyngitis due to Lung-heat and Yin-deficiency, and compare with Qinghouyan oral Liquid. Totally 144 subjects were enrolled and randomly divided into two groups (72 in the test group and 72 in the control group). The participants in the test group were given Qinghouyan lozenge for 5 days, and those in the control group were given Qinghouyan oral Liquid for 5 days. The effectiveness evaluation indexes were pharyngalgia/odynophagia disappearance rate, overall efficacy of TCM syndromes, TCM syndrome scores, and single syndrome and sign disappearance rate. During the test, the safety was evaluated by vital sign, lab examination indexes and adverse events. The results for the full analysis set showed that the couth disappearance rate, the incidence rate of TCM syndromes, and the throat/uvula congestion disappearance rate of the test group were higher than that of the control group (P < 0.05), with significant differences in the changes in syndrome scores between the two groups (P < 0.05). Altogether 3 adverse events were observed in the test group while 6 adverse events in the control group, without significant differences in the adverse event rate between the two groups (P < 0.05), serious abnormal laboratory examinations and vital signs. In conclusion, Qinghouyan lozenge has better efficacy in treatment of acute pharyngitis due to Lung-heat and Yin-deficiency than Qinghouyan oral liquid, with good safety.


Assuntos
Medicina Tradicional Chinesa , Faringite/tratamento farmacológico , Doença Aguda , Método Duplo-Cego , Humanos
12.
EMBO J ; 29(18): 3082-93, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20729808

RESUMO

A growing number of long nuclear-retained non-coding RNAs (ncRNAs) have recently been described. However, few functions have been elucidated for these ncRNAs. Here, we have characterized the function of one such ncRNA, identified as metastasis-associated lung adenocarcinoma transcript 1 (Malat1). Malat1 RNA is expressed in numerous tissues and is highly abundant in neurons. It is enriched in nuclear speckles only when RNA polymerase II-dependent transcription is active. Knock-down studies revealed that Malat1 modulates the recruitment of SR family pre-mRNA-splicing factors to the transcription site of a transgene array. DNA microarray analysis in Malat1-depleted neuroblastoma cells indicates that Malat1 controls the expression of genes involved not only in nuclear processes, but also in synapse function. In cultured hippocampal neurons, knock-down of Malat1 decreases synaptic density, whereas its over-expression results in a cell-autonomous increase in synaptic density. Our results suggest that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance.


Assuntos
Biomarcadores/metabolismo , Núcleo Celular/genética , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , RNA Nuclear/fisiologia , Sinapses/genética , Fatores de Transcrição/genética , Animais , Northern Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Núcleo Celular/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Fatores de Transcrição/metabolismo
13.
Nucleic Acids Res ; 40(7): e50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22228832

RESUMO

Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments.


Assuntos
Imunoprecipitação da Cromatina , Elementos Reguladores de Transcrição , Software , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Análise por Conglomerados , Simulação por Computador , Drosophila melanogaster/genética , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras , Análise de Sequência de DNA
14.
Transl Psychiatry ; 14(1): 250, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858380

RESUMO

The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.


Assuntos
Doença de Alzheimer , Hipocampo , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Masculino , Feminino , Idoso , Predisposição Genética para Doença , Mitocôndrias/metabolismo , Mitocôndrias/genética , Estudo de Associação Genômica Ampla , Idoso de 80 Anos ou mais , Proteínas de Transporte da Membrana Mitocondrial/genética , Atrofia/genética
15.
Nature ; 447(7148): 1130-4, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17554337

RESUMO

A global decrease in microRNA (miRNA) levels is often observed in human cancers, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a-c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Divisão Celular/genética , Linhagem Celular , Dano ao DNA , Camundongos , Especificidade por Substrato , Transcrição Gênica
16.
Int J Mol Sci ; 14(9): 18790-808, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24036441

RESUMO

Long non-coding RNAs (lncRNAs) are a heterogeneous class of RNAs that are generally defined as non-protein-coding transcripts longer than 200 nucleotides. Recently, an increasing number of studies have shown that lncRNAs can be involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Moreover, lncRNAs are dysregulated in a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders, and various cancers, which indicates their important roles in these diseases. Here, we reviewed the current understanding of lncRNAs, including their definition and subclassification, regulatory functions, and potential roles in different types of complex human diseases.


Assuntos
RNA Longo não Codificante/genética , Doenças Autoimunes/genética , Doença da Artéria Coronariana/genética , Humanos , Neoplasias/genética , Doenças do Sistema Nervoso/genética
17.
Microbiol Spectr ; : e0208523, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724859

RESUMO

Escherichia coli strains of phylogenetic group B2 are often associated with urinary tract infections (UTIs) and several other diseases. Recent genomic and transcriptomic analyses have not suggested or identified specific genes required for virulence, but have instead suggested multiple virulence strategies and complex host-pathogen interactions. Previous analyses have not compared core gene expression between phylogenetic groups or between pathogens and nonpathogens within phylogenetic groups. We compared the core gene expression of 35 strains from three phylogenetic groups that included both pathogens and nonpathogens after growth in a medium that allowed comparable growth of both types of strains. K-means clustering suggested a B2 cluster with 17 group B2 strains and two group A strains; an AD cluster with six group A strains, five group D strains and one B2 strain; and four outliers which included the highly studied model uropathogenic E. coli strains UTI89 and CFT073. Half of the core genes were differentially expressed between B2 and AD cluster strains, including transcripts of genes for all aspects of macromolecular synthesis-replication, transcription, translation, and peptidoglycan synthesis-energy metabolism, and environmental-sensing transcriptional regulators. Notably, core gene expression between nonpathogenic and uropathogenic transcriptomes within phylogenetic groups did not differ. If differences between pathogens and nonpathogens exist, then the differences do not require transcriptional reprogramming. In summary, B2 cluster strains have a distinct transcription pattern that involves hundreds of genes. We propose that this transcription pattern is one factor that contributes to virulence. IMPORTANCE Escherichia coli is a diverse species and an opportunistic pathogen that is associated with various diseases, such as urinary tract infections. When examined, phylogenetic group B2 strains are more often associated with these diseases, but the specific properties that contribute to their virulence are not known. From a comparative transcriptomic analysis, we found that group B2 strains grown in a nutrient-rich medium had a distinct transcription pattern, which is the first evidence that core gene expression differs between phylogenetic groups. Understanding the consequences of group B2 transcription pattern will provide important information on basic E. coli biology, the basis for E. coli virulence, and possibly for developing therapies for a majority of urinary tract infections and other group B2-associated diseases.

18.
Comput Struct Biotechnol J ; 21: 5662-5675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053545

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid ß (Aß) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.

19.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991017

RESUMO

Mitochondria are critical for neurophysiology, and mitochondrial dysfunction constitutes a characteristic pathology in both brain aging and Alzheimer disease (AD). Whether mitochondrial deficiency in brain aging and AD is mechanistically linked, however, remains controversial. We report a correlation between intrasynaptosomal amyloid ß 42 (Aß42) and synaptic mitochondrial bioenergetics inefficiency in both aging and amnestic mild cognitive impairment, a transitional stage between normal aging and AD. Experiments using a mouse model expressing nonmutant humanized Aß (humanized Aß-knockin [hAß-KI] mice) confirmed the association of increased intramitochondrial sequestration of Aß42 with exacerbated synaptic mitochondrial dysfunction in an aging factor- and AD risk-bearing context. Also, in comparison with global cerebral Aß, intramitochondrial Aß was relatively preserved from activated microglial phagocytosis in aged hAß-KI mice. The most parsimonious interpretation of our results is that aging-related mitochondrial Aß sequestration renders synaptic mitochondrial dysfunction in the transitional stage between normal aging and AD. Mitochondrial dysfunction in both brain aging and the prodromal stage of AD may follow a continuous transition in response to escalated intraneuronal, especially intramitochondrial Aß, accumulation. Moreover, our findings further implicate a pivotal role of mitochondria in harboring early amyloidosis during the conversion from normal to pathological aging.


Assuntos
Doença de Alzheimer , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
20.
Curr Drug Metab ; 24(6): 448-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409552

RESUMO

BACKGROUND: Catalpol, one of the main bioactive components isolated from Rehmannia glutinosa, was developed by Suzhou Youseen for the treatment of ischemic stroke; however, preclinical information about its absorption, distribution, metabolism, and excretion (ADME) in animals is inadequate. OBJECTIVE: This study aimed to illuminate the pharmacokinetics (PK), mass balance (MB), tissue distribution (TD), and metabolism of catalpol after a single intragastric administration of 30 mg/kg (300 µCi/kg) [3H]catalpol in rats. METHODS: Radioactivity in plasma, urine, feces, bile, and tissues was measured by liquid scintillation counting (LSC), and metabolite profiling was characterized by UHPLC-ß-ram and UHPLC-Q-Exactive plus MS. RESULTS: The radio pharmacokinetic results showed that catalpol was rapidly absorbed by Sprague‒Dawley (SD) rats, with a median Tmax of 0.75 h and an arithmetic mean half-life (t1/2) of the total radioactivity of approximately 1.52 h in plasma. The mean recovery of the total radioactive dose was 94.82%±1.96% over 168 h postdose (57.52%±12.50% in the urine and 37.30%±12.88% in the feces). The parent drug catalpol was the predominant drugrelated substance in rat plasma and urine, while M1 and M2, two unidentified metabolites, were detected in feces. When [3H]catalpol was incubated with ß-glucosidase and rat intestinal flora, we found that the same metabolites M1 and M2 were produced in both incubation systems. CONCLUSIONS: Catalpol was excreted mainly through the urine. The drug-related substances were primarily concentrated in the stomach, large intestine, bladder, and kidney. Only the parent drug was detected in the plasma and urine, and M1 and M2 were detected in the feces. We speculate that the metabolism of catalpol in rats was mainly mediated by the intestinal flora, resulting in an aglycone-containing hemiacetal hydroxyl structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA