Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300286

RESUMO

Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO2, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.

2.
Nano Lett ; 22(12): 4661-4668, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640103

RESUMO

Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.

3.
Nat Commun ; 14(1): 7447, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978192

RESUMO

The atomic-thick anticorrosion coating for copper (Cu) electrodes is essential for the miniaturisation in the semiconductor industry. Graphene has long been expected to be the ultimate anticorrosion material, however, its real anticorrosion performance is still under great controversy. Specifically, strong electronic couplings can limit the interfacial diffusion of corrosive molecules, whereas they can also promote the surficial galvanic corrosion. Here, we report the enhanced anticorrosion for Cu simply via a bilayer graphene coating, which provides protection for more than 5 years at room temperature and 1000 h at 200 °C. Such excellent anticorrosion is attributed to a nontrivial Janus-doping effect in bilayer graphene, where the heavily doped bottom layer forms a strong interaction with Cu to limit the interfacial diffusion, while the nearly charge neutral top layer behaves inertly to alleviate the galvanic corrosion. Our study will likely expand the application scenarios of Cu under various extreme operating conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA