Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930881

RESUMO

Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.


Assuntos
Antocianinas , Antocianinas/química , Antocianinas/isolamento & purificação , Humanos , Proteínas/isolamento & purificação , Proteínas/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Disponibilidade Biológica , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
2.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108271

RESUMO

Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.

3.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677713

RESUMO

Malus hupehensis (MH), as a natural resource, contains various active ingredients such as polyphenols, polysaccharides, proteins, amino acids, volatile substances, and other components. Increasingly, studies have indicated that MH showed a variety of biological activities, including antioxidant, hypoglycemic, hypolipidemic, anti-cancer, anti-inflammatory activities, and other activities. Hence, MH has attracted wide interest because of its high medical and nutritional value. It is necessary to review the active components and biological activities of MH. This paper systematically reviewed the chemical substances, biological activities, and potential problems of MH to further promote the related research of MH and provide an important reference for its application and development in medicine and food.


Assuntos
Malus , Malus/química , Polifenóis/farmacologia , Polifenóis/metabolismo , Antioxidantes/química , Hipoglicemiantes/metabolismo
4.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630690

RESUMO

Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.


Assuntos
Antioxidantes , Polissacarídeos , Antioxidantes/química , Antioxidantes/farmacologia , Alimentos , Imunomodulação , Medicina Tradicional Chinesa , Polissacarídeos/química
5.
J Sep Sci ; 44(9): 1843-1851, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33595167

RESUMO

For a rapid enrichment and separation of minor components from Malus hupehensis, the selection of suitable solvent system is the great challenge for liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography. According to the concept of "like dissolves like," the similarity of the average polarity between solvent system and target compounds was the significant characteristic of liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography separation. The polarity parameter model provides a way to calculate the polarity of unknown compounds. Under the guidance of the polarity, an efficient enrichment and separation approach was established through liquid-liquid extraction and high-speed counter-current chromatography with solvent systems composed of n-hexane-ethyl acetate-acetonitrile-water (5:3:5:7, v/v), n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v), respectively. Thus, the total content of minor compounds was increased from 2.6% to 17.2%, and two novel compounds (6´´-O-coumaroyl-2´-O-glucopyranosylphloretin and 3´´´-methoxy-6´´-O-feruloy-2´-glucopyranosylphloretin) were obtained. The discovery of the new dihydrochalcones expanded the structural diversity of compounds produced by the genus Malus. The experimental results demonstrated that compound polarity can be described by the polarity parameter model and is an important reference for investigating optimum solvent systems for liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography.


Assuntos
Extração Líquido-Líquido , Malus/química , Fenóis/isolamento & purificação , Acetatos/química , Acetonitrilas/química , Distribuição Contracorrente , Hexanos/química , Metanol/química , Fenóis/química , Solventes/química , Água/química
6.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921423

RESUMO

Malus hupehensis (M. hupehensis), an edible and medicinal plant with significant antioxidant and hypoglycemic activity, has been applied to new resource foods. However, the structural characterization and biological effects of its polysaccharides (MHP) are less known. The optimum extraction parameters to achieve the highest extraction efficiency (47.63%), the yield (1.68%) and purity of MHP (89.6%) by ultrasonic-assisted aqueous two-phase system (ATPS) were obtained under the liquid-to-solid ratio of 23 g/mL, ultrasonic power of 65 W, and ultrasonic time of 33 min. According to the analysis results, MHP was composed of Man, GlcA, Rha, GalA, Glc, Gal, Xyl, Ara, and Fuc, in which Ara and Gal were the main components, and the content of GlcA was the lowest. In in vitro activity analysis, MHP showed a significant antioxidant capacity, and an inhibition activity of α-glucosidase and the advanced glycation end products (AGEs) formation in the BSA/Glc reaction model. MHP interacted with α-glucosidase and changed the internal microenvironment of the enzyme, and inhibited the AGEs formation, which provides more evidence for the antihyperglycemic mechanism of MHP. The results suggest that ATPS is an efficient and environmentally friendly solvent system, and M. hupehensis has broad application prospects in functional foods, healthcare products, and pharmaceuticals.


Assuntos
Malus/química , Polissacarídeos/isolamento & purificação , Ultrassom , Água/química , Antioxidantes/farmacologia , Dicroísmo Circular , Etanol/química , Produtos Finais de Glicação Avançada/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Monossacarídeos/análise , Extratos Vegetais/farmacologia , Sais/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biotechnol Lett ; 42(11): 2453-2466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32780285

RESUMO

OBJECTIVE: The aim of this study is to evaluate the cytoprotection and potential molecular mechanisms of cyanidin-3-glucoside (C3G) on hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to examine the viability of HepG2 cells exposure to H2O2 or C3G. Meanwhile, the antioxidant properties of C3G were measured by determining the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and the malondialdehyde (MDA) levels. Flow cytometry was employed to determine HepG2 cells apoptosis, and HepG2 cells were stained with Hoechst 33342 to observe cell morphology. 2',7'-dichlorofluorescin diacetate (DCFH-DA) was used to evaluate the production of intracellular reactive oxygen species (ROS). Finally, the expression of apoptosis-related protein was monitored through western blot analysis. RESULTS: HepG2 cells induced with H2O2 presented a remarkable decrease in cell viability that was suppressed when HepG2 cells were interfered with C3G (2.5-10 µM). C3G interference memorably and dose-dependently inhibited H2O2-induced intracellular ROS and MDA overproduction, while C3G treatment markedly increased H2O2-induced the activities of intracellular SOD, GSH-Px and CAT. Eventually, the relative proteins expression levels of p53, cleaved caspase-9/3, cytochrome c, Fas-L, Fas, FADD and caspase-8 were substantially up-regulated in H2O2-triggered HepG2 cells, and Bax/Bcl-2 ratio and the relative protein expression levels of PARP were dramatically down-regulated. However, the expression levels of these relative proteins were reversed in C3G-interfered HepG2 cells. CONCLUSIONS: C3G could protect HepG2 cells from oxidative damage, and the effects that were mediated by the mitochondrial apoptotic pathways and the external pathways.


Assuntos
Antocianinas/farmacologia , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Células Hep G2 , Humanos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
8.
Molecules ; 25(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233829

RESUMO

Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.


Assuntos
Antocianinas/química , Antocianinas/isolamento & purificação , Mirtilos Azuis (Planta)/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ondas Ultrassônicas , Vinho/análise , Algoritmos , Antocianinas/farmacologia , Antineoplásicos Fitogênicos/química , Ciclo Celular/efeitos dos fármacos , Fracionamento Químico/métodos , Células Hep G2 , Humanos , Modelos Teóricos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Reprodutibilidade dos Testes , Solventes
9.
J Food Sci ; 89(5): 2827-2842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578114

RESUMO

Ultrasound assisted hot water extraction (UAHWE) was applied to extraction of polysaccharides from Taraxacum mongolicum with hot water as extract solvent. Experimental factors in UAHWE process were optimized by response surface methodology. The optimal extraction parameters to achieve the highest Taraxacum mongolicum polysaccharides (TMPs) yield (12.08 ± 0.14)% by UAHWE were obtained under the ultrasound power of 200 W, extraction temperature of 62°C, solid-to-liquid ratio of 1:20 g/mL, and extraction time of 40 min, and then the crude TMPs were further purified by DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous polysaccharide fraction (TMPs-1-SG). Subsequently, the structure of TMPs-1-SG was characterized by UV-vis, Fourier transform infrared spectroscopy (FT-IR), high performance gel permeation chromatography (HPGPC), high performance liquid chromatography (HPLC), scanning electron microscope (SEM), transmission electron microscopy (TEM), and Congo red test. The results display that TMPs-1-SG with an average molecular weight of 5.49 × 104 Da was comprised of mannose (Man), galactose (Gal), xylose (Xyl), and arabinose (Ara) with a molar ratio of 39.85:52.61:27.14:6.30. Moreover, TMPs-1-SG did not contain a triple helix structure. Furthermore, TMPs-1-SG and TEM presented a sheet-like, rod-shaped, and irregular structure. Finally, the antioxidant activity of TMPs-1-SG was evaluated by in vitro experiment. The IC50 values of scavenging DPPH and OH radicals for TMPs-1-SG achieved 0.71 mg/mL and 0.75 mg/mL, respectively. The findings can provide an effective method for extracting polysaccharides from natural resources.


Assuntos
Antioxidantes , Temperatura Alta , Extratos Vegetais , Polissacarídeos , Taraxacum , Taraxacum/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Água/química , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ultrassom/métodos
10.
Int J Biol Macromol ; 262(Pt 1): 129923, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325677

RESUMO

Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.


Assuntos
Medicina Tradicional Chinesa , Neoplasias , Humanos , Medicina Tradicional Chinesa/métodos , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , China
11.
Int J Biol Macromol ; : 134594, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127285

RESUMO

Polyphenols, as important secondary metabolites in nature, are widely distributed in vegetables, fruits, grains, and other foods. Polyphenols have attracted widespread attention in the food industry and nutrition due to their unique structure and various biological activities. However, the health benefits of polyphenols are compromised owing to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides largely determined the stability and functional characteristics of polyphenols in food processing and storage. Thus, this topic has attracted widespread attention in recent years. The main purposes of this article are as follows: 1) to review the interaction mechanisms of polyphenols and polysaccharides including non-covalent and covalent bonds; 2) to comprehensively analyze the influencing factors of the interaction between polyphenols and polysaccharides, and introduce the effects of their interaction on the properties of polyphenols; 3) to systematically summarize the applications of interaction between polyphenols and polysaccharides. The findings can provide the important reference and theoretical support for the application of polyphenols and polysaccharides in food industry.

12.
Int J Biol Macromol ; 270(Pt 2): 132170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734333

RESUMO

Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.


Assuntos
Microbioma Gastrointestinal , Polissacarídeos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos
13.
Ultrason Sonochem ; 100: 106614, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801994

RESUMO

To understand the effect of coupling parameters between two ultrasonic waves on acoustic cavitation, in this work, Keller-Miksis equation was introduced to built a bubble dynamics model that was used to describe the dynamic evolution of bubble and to discuss the effect of dual-frequency coupling parameters, such as frequency difference f (5 âˆ¼ 280 kHz), phase difference φ (0 âˆ¼ 7π/4 rad), and power allocation ratio ß (0 âˆ¼ 9), on acoustic cavitation in the presence of two ultrasonic waves irradiation. The enhancement and attenuation effect of cavitation have also been analyzed in detail by comparing the different dual-frequency combinations with single-frequency mode. It was found that all coupling parameters have a significant impact on acoustic cavitation, where the smaller values of f and φ were employed when ß = 1, the stronger cavitation intensity was observed. Nevertheless, as the power allocation ratio is increased from 1 to 9 at φ = 0 for different frequency differences, the acoustic cavitation exhibits an attenuation trend. When the total acoustic power is evenly distributed, namely ß = 1, the largest maximum expansion ratio (i.e. 12.96) was obtained at φ = 0 and f = 5 kHz, which represents a strongest cavitation effect. In addition, for different frequency combinations, the enhancement effect is found under the mixture of low and low frequency, whereas attenuation effect is generated easily by the combination of high and low frequency. Moreover, the effect become more pronounced as the proportion of high frequency component increases.

14.
J Chromatogr Sci ; 61(6): 539-545, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35325046

RESUMO

In this study, secondary metabolites of Eurotium cristatum were isolated and purified by high-speed counter-current chromatography (HSCCC), and their hypoglycemic activities were studied. The general-useful estimate of solvent systems (GUESS) for counter-current chromatography was employed to select the appropriate solvent systems of n-hexane-ethyl acetate-methanol-water (HEMW, 4:6:5:5, v/v/v/v) for HSCCC practice, and three compounds were separated from the crude ethyl acetate extract of E. cristatum in one single step; 6.1 mg of Compounds 1, 5.6 mg of Compound 2 and 3.8 mg of Compound 3 were obtained from 100 mg of crude extract with a stationary phase retention of 75%. The compounds were then identified as emodin methyl ether, chrysophanol and emodin, respectively. The activity of the target compounds in the secondary metabolites of E. cristatum was verified by testing their inhibition on α-glucosidase activity and molecular docking simulation. The results showed that emodin, chrysophanol and emodin methyl ether had significant inhibitory effects on the α-glucosidase activity. This work confirmed the effectiveness of HSCCC in the separation of compounds in complex extracts and provided reference for further research and application of E. cristatum.


Assuntos
Distribuição Contracorrente , Emodina , Distribuição Contracorrente/métodos , Hipoglicemiantes/farmacologia , Emodina/farmacologia , Simulação de Acoplamento Molecular , alfa-Glucosidases , Solventes/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Int J Biol Macromol ; 252: 126199, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562477

RESUMO

The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.


Assuntos
Hipoglicemiantes , Polissacarídeos , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Monossacarídeos , Peso Molecular
16.
Ultrason Sonochem ; 90: 106174, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36170772

RESUMO

In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.


Assuntos
Antocianinas , Solanum melongena , Antioxidantes , Fenóis , Extratos Vegetais , Etanol
17.
Int J Biol Macromol ; 208: 390-399, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35339498

RESUMO

D101 macroporous resin combined with high speed counter-current chromatography (D101 MR-HSCCC) was used to separate gallic acid (GA) from Cornus officinalis, and GA was added to starch-based products to improve food quality. The interaction and action mechanism of corn starch (CS) with GA were investigated for prediction and thereby controlling the structure and functions of starch-based foods. Results show that GA with 98.72% purity was successfully obtained using the D101 MR-HSCCC technique. HSCCC solvent system was composed of n-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v). GA inhibited CS dissolution and improved CS swelling. Based on the particle size distribution, GA could enlarge the size of CS-GA complexes. FT-IR spectra exhibit that the interactions between CS and GA may comprise the intermolecular hydrogen bond and non-covalent bond. The results of XRD, LF-NMR and AFM show that the presence of GA could increase the relative crystallinity of CS, decrease the spin relaxation time (T2), and change the surface morphology of CS via the modification of hydrogen bonds distribution. Finally, SEM analysis indicates that GA could change the microstructure of CS-GA complexes. These findings facilitate the development of CS-based products and utilization of CS.


Assuntos
Cornus , Distribuição Contracorrente , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Contracorrente/métodos , Ácido Gálico , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Zea mays
18.
Int J Biol Macromol ; 222(Pt A): 1110-1126, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181889

RESUMO

110 kinds of traditional Chinese medicines can be used for medicine and food from Chinese pharmacopoeia in 2021. With the deepening of research in recent years, medicinal and edible homologous (MEH) traditional Chinese medicines have great development and application prospects in many fields. Polysaccharides are one of the major and representative pharmacologically active macromolecules in traditional Chinese medicines with MEH. Moreover, traditional Chinese medicines with MEH have become the main source of natural polysaccharides with safety, high efficiency, and low side effects. Increasing researches have confirmed that MEH polysaccharides (MEHPs) have multiple biological activities both in vitro and in vivo methods, such as antioxidant, immunomodulatory, anti-tumor, anti-aging, anti-inflammatory, hypoglycemic, hypolipidemic activities, and regulating intestinal flora. Additionally, different raw materials, extraction, purification, and chemical modification methods result in differences in the structure and biological activities of MEHPs. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction, purification, structure, modification, biological activities, and potential mechanism of MEHPs to support their therapeutic effects and health functions. New valuable insights and theoretical basis for the future researches and developments regarding MEHPs were proposed in the fields of medicine and food.


Assuntos
Medicina Tradicional Chinesa , Polissacarídeos , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , Imunomodulação , Hipoglicemiantes
19.
Antioxidants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670865

RESUMO

Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.

20.
Front Nutr ; 9: 1005181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159471

RESUMO

Traditional Chinese medicines (TCM), as the unique natural resource, are rich in polysaccharides, polyphenols, proteins, amino acid, fats, vitamins, and other components. Hence, TCM have high medical and nutritional values. Polysaccharides are one of the most important active components in TCM. Growing reports have indicated that TCM polysaccharides (TCMPs) have various biological activities, such as antioxidant, anti-aging, immunomodulatory, hypoglycemic, hypolipidemic, anti-tumor, anti-inflammatory, and other activities. Hence, the research progresses and future prospects of TCMPs must be systematically reviewed to promote their better understanding. The aim of this review is to provide comprehensive and systematic recombinant information on the extraction, purification, structure, chemical modification, biological activities, and potential mechanism of TCMPs to support their therapeutic effects and health functions. The findings provide new valuable insights and theoretical basis for future research and development of TCMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA