Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 22(4): 1425-1446, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37294482

RESUMO

We developed the pelvic floor model in physiological and pathological states to understand the changes of biomechanical axis and support that may occur from the normal physiological state to the prolapse pathological state of the pelvic floor. Based on the physiological state model of the pelvic floor, we model the uterus to the pathological state position by balancing intra-abdominal pressure (IAP) and uterine pathological position load. Under combined impairments, we compared the patterns of changes in pelvic floor biomechanics that may be induced by different uterine morphological characteristic positions under different IAP. The orientation of the uterine orifice gradually changes from the sacrococcygeal direction to the vertical downward of vaginal orifice, and a large downward prolapse displacement occurs, and the posterior vaginal wall shows "kneeling" profile with posterior wall bulging prolapse. When the abdominal pressure value was 148.1 cmH2O, the descent displacement of the cervix in the normal and pathological pelvic floor system was 11.94, 20, 21.83 and 19.06 mm in the healthy state, and 13.63, 21.67, 22.94 and 19.38 mm in the combined impairment, respectively. The above suggests a maximum cervical descent displacement of the uterus in the anomalous 90° position, with possible cervical-uterine prolapse as well as prolapse of the posterior vaginal wall. The combined forces of the pelvic floor point in the direction of vertical downward prolapse of the vaginal orifice, and the biomechanical support of the bladder and sacrococcygeal bone gradually diminishes, which may exacerbate the soft tissue impairments and biomechanical imbalances of the pelvic floor to occur of POP disease.


Assuntos
Prolapso de Órgão Pélvico , Feminino , Humanos , Prolapso de Órgão Pélvico/patologia , Diafragma da Pelve , Análise de Elementos Finitos , Vagina , Bexiga Urinária
2.
Front Bioeng Biotechnol ; 11: 1292407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260732

RESUMO

Objective: The prolapse mechanism of multifactorial impairment of the female pelvic floor system and the mechanics of the pelvic floor after apical suspension surgery are not yet understood, so we developed biomechanical models of the pelvic floor for the normal physiological state (0°) and 90° pathological state. Methods: Under different types and levels of the impairments and uterosacral suspensions, the possible changes in the morphometric characteristics and the mechanical characteristics of suspension and support functions were simulated based on the biomechanical models of the pelvic floor. Results: After the combined impairments, the descending displacement of the pelvic floor cervix and the stress and displacement of the perineal body reached maximum values. After surgical mesh implantation, the stresses of the normal pelvic floor were concentrated on the uterine fundus, cervix, and top of the bladder and the stresses of the 90° pathological state pelvic floor were concentrated on the uterine fundus, uterine body, cervix, middle of the posterior vaginal wall, and bottom of the perineal body. Conclusion: After the combined impairments, the biomechanical support of the bladder and sacrococcyx in the anterior (0°) and 90° pathological state pelvic floor system is diminished, the anterior vaginal wall dislodges from the external vaginal opening, and the posterior vaginal wall forms "kneeling" profiles. The pelvic floor system may evolve with a tendency toward the cervical prolapse with anterior and posterior vaginal wall prolapse and eventually prolapse. After surgical mesh implantation, the cervical position can be better restored; however, the load of combined impairment of the pelvic floor is mainly borne by the surgical mesh suspension, the biomechanical support function of pelvic floor organs and sacrococcyx was not repaired by the physiological structure, and the results of uterosacral suspension alone may be poor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA