Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
2.
Funct Integr Genomics ; 23(4): 309, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735249

RESUMO

Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.


Assuntos
Cisteína , Transcriptoma , Humanos , Animais , Feminino , Ratos , Estrogênios , Estro , Hipocampo
3.
Mol Psychiatry ; 26(11): 6277-6292, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963281

RESUMO

Sleep deprivation (SD) is increasingly common in modern society, which can lead to the dysregulation of inflammatory responses and cognitive impairment, but the mechanisms remain unclear. Emerging evidence suggests that gut microbiota plays a critical role in the pathogenesis and development of inflammatory and psychiatric diseases, possibly via gut microbiota-brain interactions and neuroinflammation. The present study investigated the impact of SD on gut microbiota composition and explored whether alterations of the gut microbiota play a causal role in chronic inflammatory states and cognitive impairment that are induced by SD. We found that SD-induced gut dysbiosis, inflammatory responses, and cognitive impairment in humans. Moreover, the absence of the gut microbiota suppressed inflammatory response and cognitive impairment induced by SD in germ-free (GF) mice. Transplantation of the "SD microbiota" into GF mice activated the Toll-like receptor 4/nuclear factor-κB signaling pathway and impaired cognitive function in the recipient mice. Mice that harbored "SD microbiota" also exhibited increases in neuroinflammation and microglial activity in the hippocampus and medial prefrontal cortex. These findings indicate that gut dysbiosis contributes to both peripheral and central inflammatory processes and cognitive deficits that are induced by SD, which may open avenues for potential interventions that can relieve the detrimental consequences of sleep loss.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Animais , Disfunção Cognitiva/etiologia , Disbiose , Microbioma Gastrointestinal/fisiologia , Inflamação/complicações , Camundongos , Privação do Sono/complicações
4.
Mol Psychiatry ; 25(6): 1260-1274, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31375779

RESUMO

Immune dysregulation, specifically of inflammatory processes, has been linked to behavioral symptoms of depression in both human and rodent studies. Here, we evaluated the antidepressant effects of immunization with altered peptide ligands of myelin basic protein (MBP)-MBP87-99[A91, A96], MBP87-99[A91], and MBP87-99[R91, A96]-in different models of depression and examined the mechanism by which these peptides protect against stress-induced depression. We found that a single dose of subcutaneously administered MBP87-99[A91, A96] produced antidepressant-like effects by decreasing immobility in the forced swim test and by reducing the escape latency and escape failures in the learned helplessness paradigm. Moreover, immunization with MBP87-99[A91, A96] prevented and reversed depressive-like and anxiety-like behaviors that were induced by chronic unpredictable stress (CUS). However, MBP87-99[R91, A96] tended to aggravate CUS-induced anxiety-like behavior. Chronic stress increased the production of peripheral and central proinflammatory cytokines and induced the activation of microglia in the prelimbic cortex (PrL), which was blocked by MBP87-99[A91, A96]. Immunization with MBP-derived altered peptide ligands also rescued chronic stress-induced deficits in p11, phosphorylated cyclic adenosine monophosphate response element binding protein, and brain-derived neurotrophic factor expression. Moreover, microinjections of recombinant proinflammatory cytokines and the knockdown of p11 in the PrL blunted the antidepressant-like behavioral response to MBP87-99[A91, A96]. Altogether, these findings indicate that immunization with altered MBP peptide produces prolonged antidepressant-like effects in rats, and the behavioral response is mediated by inflammatory factors (particularly interleukin-6), and p11 signaling in the PrL. Immune-neural interactions may impact central nervous system function and alter an individual's response to stress.


Assuntos
Antidepressivos/química , Antidepressivos/imunologia , Depressão/imunologia , Depressão/terapia , Imunização , Proteína Básica da Mielina/química , Proteína Básica da Mielina/imunologia , Animais , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Proteína Básica da Mielina/administração & dosagem , Proteína Básica da Mielina/uso terapêutico , Ratos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/imunologia
5.
Addict Biol ; 25(4): e12793, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339209

RESUMO

Postretrieval extinction procedures are effective nonpharmacological interventions for disrupting drug-associated memories. Nonetheless, the conditioned stimulus (CS) memory retrieval-extinction procedure is ineffective in inhibiting drug craving and relapse after prolonged withdrawal, which significantly undermines its therapeutic potential. In the present study, we showed that, unlike the CS memory retrieval-extinction procedure, noncontingent heroin injections (unconditioned stimulus [UCS]) 1 hour before the extinction sessions decreased the heroin-priming-induced reinstatement, renewal, and spontaneous recovery of heroin seeking after 28 days of withdrawal (ie, remote heroin-associated memories) in rats. The UCS retrieval manipulation induced reactivation of the basolateral amygdala (BLA) after prolonged withdrawal, and this reactivation was absent with the CS retrieval manipulation. Chemogenetic inactivation of the BLA abolished the inhibitory effect of the UCS memory retrieval-extinction procedure on heroin-priming-induced reinstatement after prolonged withdrawal. Furthermore, the combination of chemogenetic reactivation of BLA and CS retrieval-extinction procedure resembled the inhibitory effect of UCS retrieval-extinction procedure on heroin seeking after prolonged withdrawal. We also observed that the inhibitory effect of the UCS retrieval-extinction procedure is mediated by regulation of AMPA receptor endocytosis in the BLA. Our results demonstrate critical engagement of the BLA in reconsolidation updating of heroin-associated memory after prolonged withdrawal, extending our knowledge of the boundary conditions of the reconsolidation of drug-associated memories.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Dependência de Heroína/metabolismo , Heroína/farmacologia , Consolidação da Memória/fisiologia , Entorpecentes/farmacologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Endocitose , Dependência de Heroína/fisiopatologia , Masculino , Ratos , Receptores de AMPA/metabolismo , Fatores de Tempo
6.
J Neurosci ; 37(37): 8938-8951, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821652

RESUMO

Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression.SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the activation of calpain and decreased glutamate receptor interacting protein 1 (GRIP1) expression in the nucleus accumbens (NAc) core. The inhibition of calpain activity in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory that was blocked by prior GRIP1 knock-down. Our findings indicate that calpain-GRIP signaling is essential for the restabilization process that is associated with drug cue memory and the inhibition of calpain activity may be a novel strategy for the prevention of drug relapse.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calpaína/metabolismo , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Consolidação da Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/fisiologia , Recompensa , Animais , Expressão Gênica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Neurosci ; 35(21): 8308-21, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019344

RESUMO

Fear extinction forms a new memory but does not erase the original fear memory. Exposure to novelty facilitates transfer of short-term extinction memory to long-lasting memory. However, the underlying cellular and molecular mechanisms are still unclear. Using a classical contextual fear-conditioning model, we investigated the effect of novelty on long-lasting extinction memory in rats. We found that exposure to a novel environment but not familiar environment 1 h before or after extinction enhanced extinction long-term memory (LTM) and reduced fear reinstatement. However, exploring novelty 6 h before or after extinction had no such effect. Infusion of the ß-adrenergic receptor (ßAR) inhibitor propranolol and glucocorticoid receptor (GR) inhibitor RU486 into the CA1 area of the dorsal hippocampus before novelty exposure blocked the effect of novelty on extinction memory. Propranolol prevented activation of the hippocampal PKA-CREB pathway, and RU486 prevented activation of the hippocampal extracellular signal-regulated kinase 1/2 (Erk1/2)-CREB pathway induced by novelty exposure. These results indicate that the hippocampal ßAR-PKA-CREB and GR-Erk1/2-CREB pathways mediate the extinction-enhancing effect of novelty exposure. Infusion of RU486 or the Erk1/2 inhibitor U0126, but not propranolol or the PKA inhibitor Rp-cAMPS, into the CA1 before extinction disrupted the formation of extinction LTM, suggesting that hippocampal GR and Erk1/2 but not ßAR or PKA play critical roles in this process. These results indicate that novelty promotes extinction memory via hippocampal ßAR- and GR-dependent pathways, and Erk1/2 may serve as a behavioral tag of extinction.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores de Glucocorticoides/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores
8.
J Neurosci ; 34(30): 10010-21, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057203

RESUMO

Maladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown. The amygdala is required for the reconsolidation of a destabilized drug memory after retrieval of drug-paired stimuli. Here, we used conditioned place preference (CPP) and self-administration procedures to determine whether amygdala eIF2α dephosphorylation is required for the reconsolidation of morphine and cocaine memories in rats. We found that the levels of eIF2α phosphorylation (Ser51) and activating transcription factor 4 (ATF4) were decreased after reexposure to a previously morphine- or cocaine-paired context (i.e., a memory retrieval procedure) in the basolateral amygdala (BLA) but not in the central amygdala. Intra-BLA infusions of Sal003, a selective inhibitor of eIF2α dephosphorylation, immediately after memory retrieval disrupted the reconsolidation of morphine- or cocaine-induced CPP, leading to a long-lasting suppression of drug-paired stimulus-induced craving. Advanced knockdown of ATF4 expression in the BLA by lentivirus-mediated short-hairpin RNA blocked the disruption of the reconsolidation of morphine-induced CPP induced by Sal003 treatment. Furthermore, inhibition of eIF2α dephosphorylation in the BLA immediately after light/tone stimulus retrieval decreased subsequent cue-induced heroin-seeking behavior in the self-administration procedure. These results demonstrate that eIF2α dephosphorylation in the BLA mediates the memory reconsolidation of drug-paired stimuli.


Assuntos
Tonsila do Cerebelo/metabolismo , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Memória/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/administração & dosagem , Masculino , Memória/efeitos dos fármacos , Morfina/administração & dosagem , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
9.
J Neurosci ; 34(19): 6647-58, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806690

RESUMO

Extinction therapy has been suggested to suppress the conditioned motivational effect of drug cues to prevent relapse. However, extinction forms a new inhibiting memory rather than erasing the original memory trace and drug memories invariably return. Perineuronal nets (PNNs) are a specialized extracellular matrix around interneurons in the brain that have been suggested to be a permissive factor that allows synaptic plasticity in the adolescent brain. The degradation of PNNs caused by chondroitinase ABC (ChABC) may generate induced juvenile-like plasticity (iPlasticity) and promote experience-dependent plasticity in the adult brain. In the present study, we investigated the effect of removing PNNs in the amygdala of rat on the extinction of drug memories. We found that extinction combined with intra-amygdala injections of ChABC (0.01 U/side) prevented the subsequent priming-induced reinstatement of morphine-induced and cocaine-induced, but not food -induced, conditioned place preference (CPP). Intra-amygdala injections of ChABC alone had no effect on the retention, retrieval, or relearning of morphine-induced CPP and storage of acquired food-induced CPP. Moreover, we found that the procedure facilitated the extinction of heroin- and cocaine-seeking behavior and prevented the spontaneous recovery and drug-induced reinstatement of heroin- and cocaine-seeking behavior. We also found that the effect of PNNs degradation combined with extinction may be mediated by the potentiation of several plasticity-related proteins in the amygdala. Altogether, our findings demonstrate that a combination of extinction training with PNNs degradation in the amygdala erases drug memories and suggest that ChABC may be an attractive candidate for the prevention of relapse.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Memória , Rede Nervosa/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Western Blotting , Condroitina ABC Liase/administração & dosagem , Condroitina ABC Liase/farmacologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Operante , Extinção Psicológica , Alimentos , Dependência de Heroína/psicologia , Masculino , Microinjeções , Dependência de Morfina/psicologia , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Prevenção Secundária
10.
Neurobiol Learn Mem ; 123: 159-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071676

RESUMO

Recent research has used context cues (odor or auditory cues) to target memories during sleep and has demonstrated that they can enhance declarative and procedural memories. However, the effects of external cues re-presented during sleep on emotional memory are still not fully understood. In the present study, we conducted a Pavlovian fear conditioning/extinction paradigm and examined the effects of re-exposure to extinction memory associated contextual tones during slow-wave sleep (SWS) and wakefulness on fear expression. The participants underwent fear conditioning on the first day, during which colored squares served as the conditioned stimulus (CS) and a mild shock served as the unconditioned stimulus (US). The next day, they underwent extinction, during which the CSs were presented without the US but accompanied by a contextual tone (pink noise). Immediately after extinction, the participants were required to take a nap or remain awake and randomly assigned to six groups. Four of the groups were separately exposed to the associated tone (i.e. SWS-Tone group and Wake-Tone group) or an irrelevant tone (control tone, CtrT) (i.e. SWS-CtrT group and Wake-CtrT group), while the other two groups were not (i.e. SWS-No Tone group and Wake-No Tone group). Subsequently, the conditioned responses to the CSs were tested to evaluate the fear expression. All of the participants included in the final analysis showed successful levels of fear conditioning and extinction. During the recall test, the fear responses were significantly higher in the SWS-Tone group than that in the SWS-No Tone group or the SWS-CtrT group, while the Wake-Tone group exhibited more attenuated fear responses than either the Wake-No Tone group or Wake-CtrT group. Otherwise, re-exposure to auditory tones during SWS did not affect sleep profiles. These results suggest that distinct conditions during which re-exposure to an extinction memory associated contextual cue contributes to differential effects on fear expression.


Assuntos
Sinais (Psicologia) , Extinção Psicológica/fisiologia , Medo/fisiologia , Memória/fisiologia , Sono/fisiologia , Vigília/fisiologia , Adulto , Condicionamento Clássico/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
11.
Int J Neuropsychopharmacol ; 18(5)2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25522425

RESUMO

BACKGROUND: Currently approved medications for opioid addiction have shown clinical efficacy, but undesired side effects, dependence induced by the medications themselves, and low treatment compliance necessitate the need for novel therapies. METHODS: A novel morphine-keyhole limpet hemocyanin conjugate vaccine was synthesized with 6-glutarylmorphine as the hapten and a lengthened linker of 6 carbon atoms. The titer and specificity of the triggered antibody were assessed by enzyme-linked immunosorbent assay. The effects of the vaccine on the morphine-induced elevation of dopamine levels in the nucleus accumbens were determined by high-performance liquid chromatography. The effects of the vaccine on morphine-induced locomotor sensitization and heroin-primed reinstatement of heroin self-administration were also assessed. RESULTS: After subcutaneous administration in rats, the vaccine triggered a high antibody titer, with comparable specificity for morphine, 6-acetylmorphine, and heroin, but no interaction with dissimilar therapeutic opioid compounds, including buprenorphine, naloxone, and nalorphine, was observed. The vaccine significantly prevented the elevation of dopamine levels in the nucleus accumbens induced by a single morphine challenge. Moreover, the vaccine prevented the expression of morphine-induced locomotor sensitization and heroin-primed reinstatement of heroin seeking, suggesting its potential for preventing relapse. CONCLUSION: These results demonstrate that active immunization with the present vaccine induces a robust morphine/heroin-specific antibody response in rats and attenuates the behavioral effects of morphine and heroin.


Assuntos
Anticorpos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Dopamina/sangue , Morfina/imunologia , Vacinas Conjugadas/administração & dosagem , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Anticorpos/farmacologia , Cromatografia Líquida de Alta Pressão , Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/administração & dosagem , Heroína/efeitos adversos , Locomoção/efeitos dos fármacos , Masculino , Morfina/administração & dosagem , Morfina/efeitos adversos , Derivados da Morfina/administração & dosagem , Derivados da Morfina/efeitos adversos , Derivados da Morfina/imunologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração , Resultado do Tratamento , Vacinas Conjugadas/farmacologia
12.
Addict Biol ; 19(6): 996-1005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23750993

RESUMO

Cocaine sensitization and reward are reported to be under the influence of diurnal rhythm. However, no previous studies have reported brain areas that play a role as modulators and underlie the mechanism of diurnal variations in cocaine reward. We examined (1) the diurnal rhythm of glycogen synthase kinase-3ß (GSK-3ß) activity in the suprachiasmatic nucleus (SCN) and reward-related brain areas in naive rats; (2) the effect of day and night on the acquisition of cocaine-induced conditioned place preference (CPP); (3) the influence of cocaine-induced CPP on GSK-3ß activity in the SCN and reward-related brain areas; and (4) the effect of the GSK-3ß inhibitor SB216763 microinjected bilaterally into the ventral tegmental area (VTA) on cocaine-induced CPP. A significant diurnal rhythm of GSK-3ß activity was found in the SCN and reward-related brain areas, with diurnal variations in cocaine-induced CPP. GSK-3ß activity in the SCN and reward-related brain areas exhibited marked diurnal variations in rats treated with saline. GSK-3ß activity in rats treated with cocaine exhibited distinct diurnal variations only in the prefrontal cortex and VTA. Cocaine decreased the expression of phosphorylated GSK-3ß (i.e. increased GSK-3ß activity) only in the VTA in rats trained and tested at ZT4 and ZT16. SB216763 microinjected into the VTA bilaterally eliminated the diurnal variations in cocaine-induced CPP, but did not affect the acquisition of cocaine-induced CPP. These findings suggest that the VTA may be a critical area involved in the diurnal variations in cocaine-induced CPP, and GSK-3ß may be a regulator of diurnal variations in cocaine-induced CPP.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Quinase 3 da Glicogênio Sintase/fisiologia , Área Tegmentar Ventral/enzimologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Recompensa , Núcleo Supraquiasmático/enzimologia , Área Tegmentar Ventral/efeitos dos fármacos
13.
Front Psychol ; 15: 1384053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863669

RESUMO

Background: Depression is one of the primary global public health issues, and there has been a dramatic increase in depression levels among young people over the past decade. The neuroplasticity theory of depression postulates that a malfunction in neural plasticity, which is responsible for learning, memory, and adaptive behavior, is the primary source of the disorder's clinical manifestations. Nevertheless, the impact of depression symptoms on associative learning remains underexplored. Methods: We used the differential fear conditioning paradigm to investigate the effects of depressive symptoms on fear acquisition and extinction learning. Skin conductance response (SCR) is an objective evaluation indicator, and ratings of nervousness, likeability, and unconditioned stimuli (US) expectancy are subjective evaluation indicators. In addition, we used associability generated by a computational reinforcement learning model to characterize the skin conductance response. Results: The findings indicate that individuals with depressive symptoms exhibited significant impairment in fear acquisition learning compared to those without depressive symptoms based on the results of the skin conductance response. Moreover, in the discrimination fear learning task, the skin conductance response was positively correlated with associability, as estimated by the hybrid model in the group without depressive symptoms. Additionally, the likeability rating scores improved post-extinction learning in the group without depressive symptoms, and no such increase was observed in the group with depressive symptoms. Conclusion: The study highlights that individuals with pronounced depressive symptoms exhibit impaired fear acquisition and extinction learning, suggesting a possible deficit in associative learning. Employing the hybrid model to analyze the learning process offers a deeper insight into the associative learning processes of humans, thus allowing for improved comprehension and treatment of these mental health problems.

14.
Sci Adv ; 10(12): eadk9484, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507477

RESUMO

Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.


Assuntos
Eletroencefalografia , Epilepsia , Animais , Humanos , Convulsões/etiologia , Sirolimo , Serina-Treonina Quinases TOR , Mamíferos
15.
Neurobiol Learn Mem ; 105: 159-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23831499

RESUMO

Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Memória/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Humanos , Aprendizagem/fisiologia , Camundongos , Ratos , Recidiva , Autoadministração , Fatores de Tempo
16.
Int J Neuropsychopharmacol ; 16(8): 1767-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23449013

RESUMO

Melanin-concentrating hormone (MCH) is a neuropeptide and its receptor is extensively expressed throughout the brain. MCH has been suggested to regulate the rewarding and reinforcing effects of psychostimulants by potentiating the dopaminergic system within the midbrain. Moreover, MCH and its receptor can regulate ERK activity. The present study investigated the role of MCH in the nucleus accumbens (NAc) in rats behaviourally sensitized to methamphetamine (Meth). We found that the development of Meth-induced locomotor sensitization was attenuated by MCH infused into the NAc shell but not core. Moreover, the elevation of ERK phosphorylation in the NAc shell induced by Meth was inhibited by locally infused MCH. Infusion of the MCH receptor 1 (MCHR1) antagonist SNAP 94847 into the NAc shell but not core augmented the initiation of locomotor sensitization and amplitude of elevated phosphorylated ERK levels induced by Meth. The expression of Meth-induced locomotor sensitization and ERK alterations after 1 wk withdrawal were not affected by either MCH or SNAP 94847 infused into the NAc shell or core. These results indicate that MCH in the NAc shell plays a critical role in the development but not expression of Meth-induced locomotor sensitization in rats, which might be mediated by the ERK signalling pathway. Our study suggests that MCH might be a potential target for the treatment of Meth addiction.


Assuntos
Comportamento Aditivo , Estimulantes do Sistema Nervoso Central/farmacologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Hormônios Hipofisários/metabolismo , Análise de Variância , Animais , Comportamento Aditivo/induzido quimicamente , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Hormônios Hipotalâmicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melaninas/farmacologia , Núcleo Accumbens/metabolismo , Piperidinas/farmacologia , Hormônios Hipofisários/farmacologia , Ratos , Ratos Sprague-Dawley
17.
Front Psychiatry ; 14: 1247714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692297

RESUMO

The experience of traumatic stress can engender lasting memories associated with the trauma, often resulting in post-traumatic stress disorder (PTSD). However, only a minority of individuals develop PTSD symptoms upon exposure. The neurobiological mechanisms underlying the pathology of PTSD are poorly understood. Utilizing a rat model of PTSD, the Single Prolonged Stress (SPS) paradigm, we were able to differentiate between resilient and susceptible individuals. Fourteen days after the SPS exposure, we conducted the behavioral analyses using Elevated Plus Maze (EPM) and Open Field (OF) tests to identify male rats as trauma resilient or susceptible. We focused on the microRNA (miRNA) profiles of the infralimbic (IL) and prelimbic (PL) cortical regions, known to be crucial in regulating the stress response. Our investigation of stressed rats exposed to the SPS procedure yielded divergent response, and differential expression microRNAs (DEmiRs) analysis indicated significant differences in the IL and PL transcriptional response. In the IL cortex, the GO analysis revealed enriched GO terms in the resilient versus control comparison, specifically related to mitogen-activated protein kinase and MAP kinase signaling pathways for their molecular functions as well as cytosol and nucleoplasm for the biological process. In the susceptible versus resilient comparison, the changes in molecular functions were only manifested in the functions of regulation of transcription involved in the G1/S transition of the mitotic cell cycle and skeletal muscle satellite cell activation. However, no enriched GO terms were found in the susceptible versus control comparison. In the PL cortex, results indicated that the DEmiRs were enriched exclusively in the cellular component level of the endoplasmic reticulum lumen in the comparison between resilient and control rats. Overall, our study utilized an animal model of PTSD to investigate the potential correlation between stress-induced behavioral dysfunction and variations in miRNA expression. The aforementioned discoveries have the potential to pave the way for novel therapeutic approaches for PTSD, which could involve the targeted regulation of transcriptome expression.

18.
Front Neurosci ; 17: 1281401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116070

RESUMO

Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.

19.
Front Endocrinol (Lausanne) ; 14: 1178396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908752

RESUMO

Sleep disorders affect mental and physical health. Infertile women undergoing assisted reproductive technology (ART) treatment are prone to sleep disorders. Sleep condition, its influencing factors, and the association between sleep condition and ART treatment outcomes before treatment have not been explored within a population with a large sample size. Therefore, we investigated the sleep characteristics of 1002 Chinese infertile women before ovulation induction and investigated the influencing factors (negative and positive psychological factors, demographics, and fertility characteristics). We also examined whether sleep conditions before treatment predicted reproductive outcomes. We found that 24.1% of participants reported poor sleep quality. Women with primary infertility reported poorer sleep than women with secondary infertility. Negative psychological factors, including depression, anxiety, and perceived stress were associated with poor sleep, whereas positive affect was linked with good sleep. Adverse sleep characteristics, including poor subjective sleep quality, sleep disturbances, and poor sleep efficiency, decreased the quantity and quality of oocytes retrieved, fertilization rates, and clinical pregnancy rates. This study indicates that before ART treatment, a large number of females with infertility suffer from sleep problems, which are affected by psychological factors and infertility type, and unhealthy sleep characteristics may impair treatment outcomes. Our findings highlight the importance of screening and treatment for sleep disorders before the enrollment of ART treatment in infertile women.


Assuntos
Infertilidade Feminina , Transtornos do Sono-Vigília , Gravidez , Humanos , Feminino , Infertilidade Feminina/terapia , Infertilidade Feminina/etiologia , Estudos Prospectivos , População do Leste Asiático , Técnicas de Reprodução Assistida/efeitos adversos , Sono , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/terapia
20.
J Neurosci ; 31(14): 5436-46, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471379

RESUMO

During abstinence, memories of drug-associated cues persist for many months, and exposure to these cues often provokes relapse to drug use. The mechanisms underlying the maintenance of these memories are unknown. A constitutively active atypical protein kinase C (PKC) isozyme, protein kinase M ζ (PKMζ), is required for maintenance of spatial memory, conditioned taste aversion, and other memory forms. We used conditioned place preference (CPP) and conditioned place aversion (CPA) procedures to study the role of nucleus accumbens PKMζ in the maintenance of drug reward and aversion memories in rats. Morphine CPP training (10 mg/kg, 4 pairings) increased PKMζ levels in accumbens core but not shell. Injections of the PKMζ inhibitor ζ inhibitory peptide (ZIP) into accumbens core but not shell after CPP training blocked morphine CPP expression for up to 14 d after injections. This effect was mimicked by the PKC inhibitor chelerythrine, which inhibits PKMζ, but not by the conventional and novel PKC inhibitor staurosporine, which does not effectively inhibit PKMζ. ZIP injections into accumbens core after training also blocked the expression of cocaine (10 mg/kg) and high-fat food CPP but had no effect on CPA induced by naloxone-precipitated morphine withdrawal. Accumbens core injections of Tat-GluR2(3Y), which inhibits GluR2-dependent AMPA receptor endocytosis, prevented the impairment in morphine CPP induced by local ZIP injections, indicating that the persistent effect of PKMζ is on GluR2-containing AMPA receptors. Results indicate that PKMζ activity in accumbens core is a critical cellular substrate for the maintenance of memories of relapse-provoking reward cues during prolonged abstinence periods.


Assuntos
Condicionamento Operante/fisiologia , Memória/fisiologia , Núcleo Accumbens/enzimologia , Proteína Quinase C/antagonistas & inibidores , Recompensa , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Memória/efeitos dos fármacos , Morfina/efeitos adversos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/efeitos adversos , Núcleo Accumbens/efeitos dos fármacos , Oligopeptídeos/farmacologia , Organofosfonatos/farmacologia , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/enzimologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA