Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922685

RESUMO

Detecting multiple targets in living cells is important in cell biology. However, multiplexed fluorescence imaging beyond two-to-three targets remains a technical challenge. Herein, we introduce a multiplexed imaging strategy, 'sequential Fluorogenic RNA Imaging-Enabled Sensor' (seqFRIES), which enables live-cell target detection via sequential rounds of imaging-and-stripping. In seqFRIES, multiple orthogonal fluorogenic RNA aptamers are genetically encoded inside cells, and then the corresponding cell membrane permeable dye molecules are added, imaged, and rapidly removed in consecutive detection cycles. As a proof-of-concept, we have identified in this study four fluorogenic RNA aptamer/dye pairs that can be used for highly orthogonal and multiplexed imaging in living bacterial and mammalian cells. After further optimizing the cellular fluorescence activation and deactivation kinetics of these RNA/dye pairs, the whole four-color semi-quantitative seqFRIES process can be completed in ∼20 min. Meanwhile, seqFRIES-mediated simultaneous detection of critical signalling molecules and mRNA targets was also achieved within individual living cells. We expect our validation of this new seqFRIES concept here will facilitate the further development and potential broad usage of these orthogonal fluorogenic RNA/dye pairs for multiplexed and dynamic live-cell imaging and cell biology studies.

2.
Nucleic Acids Res ; 51(16): 8337-8347, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486784

RESUMO

Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid-liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA-protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.


Assuntos
Organelas , RNA , RNA/genética , RNA/metabolismo , Organelas/metabolismo , Proteínas/metabolismo , Fenômenos Biofísicos
3.
Pestic Biochem Physiol ; 194: 105415, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532305

RESUMO

Y18501 is a new oxysterol-binding protein inhibitor (OSBPI) with a similar structure to oxathiapiprolin. Y18501 showed strong inhibitory activities against Phytophthora spp. and Pseudoperonospora cubensis, with EC50 ranging from 0.0005 to 0.0046 µg/mL. It also had good control efficacy on cucumber downy mildew (CDM) in the green house and in the field, and could effectively inhibit different development stages of P. cubensis, especially for sporangiophore production, sporangial production, mycelium extension, and elongation of germ tube. In addition, Y18501 showed excellent protective and curative activities against P. cubensis. It also had acropetal systemic mobility in the cucumber leaves, and could be taken up and translocated to the upper leaves more effectively from the lower leaves than from the roots. Y18501 had poorer permeability in cucumber leaves compared to oxathiapiprolin. The simultaneous application of Y18501 and chlorothalonil could significantly promote the inhibition of P. cubensis.


Assuntos
Cucumis sativus , Oomicetos , Peronospora , Hidrocarbonetos Fluorados/farmacologia , Doenças das Plantas/prevenção & controle
4.
Environ Microbiol ; 23(9): 5147-5163, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33728790

RESUMO

Asparagine (Asn, N)-linked glycosylation within Nglyco -X-S/T; X ≠ P motif is a ubiquitously distributed post-translational modification that participates in diverse cellular processes. In this work, N-glycosylation inhibitor was shown to prevent Phytophthora sojae growth, suggesting that N-glycosylation is necessary for oomycete development. We conducted a glycoproteomic analysis of P. sojae to identify and map N-glycosylated proteins and to quantify differentially expressed glycoproteins associated with mycelia, asexual cyst, and sexual oospore developmental stages. A total of 355 N-glycosylated proteins was found, containing 496 glycosites, potentially involved in glycan degradation, carbon metabolism, glycolysis, or other metabolic pathways. Through PNGase F deglycosylation assays and site-directed mutagenesis of a GPI transamidase protein (GPI16) upregulated in cysts and a heat shock protein 70 (HSP70) upregulated in oospores, we demonstrated that both proteins were N-glycosylated and that the Nglyco -N motif is a target site for asparagine - oligosaccharide linkage. Glycosite mutations of Asn 94 Nglyco -X-S/T in the GPI16 led to impaired cyst germination and pathogenicity, while mutation of the previously unknown Asn 270 Nglyco -N motif in HSP70 led to decreased oospore production. In addition to providing a map of the oomycete N-glycoproteome, this work confirms that P. sojae has evolved multiple N-glycosylation motifs essential for growth.


Assuntos
Phytophthora , Asparagina/metabolismo , Consenso , Glicosilação , Phytophthora/genética , Virulência
5.
Anal Chem ; 93(27): 9373-9382, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34191499

RESUMO

Rapid identification and quantification of opioid drugs are of significant importance and an urgent need in drug regulation and control, considering the serious social and economic impact of the opioid epidemic in the United States. Unfortunately, techniques for accurate detection of these opioids, particularly for fentanyl, an extremely potent synthetic drug of abuse and a main perpetrator in the opioid crisis, are often not readily accessible. Therefore, a fast, highly sensitive, and preferably quantitative technique, with excellent portability, is highly desirable. Such a technique can potentially offer timely and crucial information for drug control officials, as well as health professionals, about drug distribution and overdose prevention. We therefore propose a portable surface-enhanced Raman scattering (SERS) approach by pairing an easy to perform yet reliable SERS protocol with a compact Raman module suitable for rapid, on-site identification and quantification of trace fentanyl. Fentanyl spiked in urine control was successfully detected at concentrations as low as 5 ng/mL. Portable SERS also enabled detection of trace fentanyl laced in recreational drugs at mass concentrations as low as 0.05% (5 ng in 10 µg total) and 0.1% (10 ng in 10 µg total) in heroin and tetrahydrocannabinol (THC), respectively. Drug interaction with the nanoparticle surface was simulated through molecular dynamics to investigate the molecular adsorption mechanism and account for SERS signal differences observed for opioid drugs. Furthermore, resolution of fentanyl in binary and ternary opioid mixtures was readily achieved with multivariate data analysis. In sum, we developed a rapid, highly sensitive, and reliably quantitative method for trace fentanyl analysis by synergizing a streamlined SERS procedure and a portable Raman module at low cost.


Assuntos
Fentanila , Drogas Ilícitas , Analgésicos Opioides , Heroína , Limite de Detecção , Análise Espectral Raman , Estados Unidos
6.
Microbiol Spectr ; 11(1): e0379722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36629430

RESUMO

Phytophthora species are devastating filamentous plant pathogens that belong to oomycetes, a group of microorganisms similar to fungi in morphology but phylogenetically distinct. They are sterol auxotrophic, but nevertheless exploit exogenous sterols for growth and development. However, as for now the mechanisms underlying sterol utilization in Phytophthora are unknown. In this study, we identified four genes in Phytophthora capsici that encode proteins containing a sterol-sensing domain (SSD), a protein domain of around 180 amino acids comprising five transmembrane segments and known to feature in sterol signaling in animals. Using a modified CRISPR/Cas9 system, we successfully knocked out the four genes named PcSCP1 to PcSCP4 (for P. capsici SSD-containing protein 1 to 4), either individually or sequentially, thereby creating single, double, triple, and quadruple knockout transformants. Results showed that knocking out just one of the four PcSCPs was not sufficient to block sterol signaling. However, the quadruple "all-four" PcSCPs knockout transformants no longer responded to sterol treatment in asexual reproduction, in contrast to wild-type P. capsici that produced zoospores under sterol treatment. Apparently, the four PcSCPs play a key role in sterol signaling in P. capsici with functional redundancy. Transcriptome analysis indicated that the expression of a subset of genes is regulated by exogenous sterols via PcSCPs. Further investigations showed that sterols could stimulate zoospore differentiation via PcSCPs by controlling actin-mediated membrane trafficking. Moreover, the pathogenicity of the "all-four" PcSCPs knockout transformants was significantly decreased and many pathogenicity related genes were downregulated, implying that PcSCPs also contribute to plant-pathogen interaction. IMPORTANCE Phytophthora is an important genus of oomycetes that comprises many destructive plant pathogens. Due to the incompleteness of the sterol synthesis pathway, Phytophthora spp. do not possess the ability to produce sterols. Therefore, these sterol auxotrophic oomycetes need to recruit sterols from the environment such as host plants to support growth and development, which seems crucial during pathogen-plant interactions. However, the mechanisms underlying sterol utilization by Phytophthora spp. remain largely unknown. Here, we show that a family of sterol-sensing domain-containing proteins (SCPs) consisting of four members in P. capsici plays a key role in sterol signaling with functional redundancy. Moreover, these SCPs play a role in different biological processes, including asexual reproduction and pathogenicity. Our study overall revealed the multiple functions of PcSCPs and addressed the question of how exogenous sterols regulate the development of heterothallic Phytophthora spp. via SSD-containing proteins.


Assuntos
Phytophthora , Phytophthora/genética , Esteróis/metabolismo , Virulência , Crescimento e Desenvolvimento , Reprodução Assexuada , Doenças das Plantas/microbiologia
7.
J Agric Food Chem ; 71(11): 4510-4520, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36898018

RESUMO

Y18501 is a new oxysterol-binding protein inhibitor (OSBPI) that shows strong inhibitory activity against Pseudoperonospora cubensis. In this study, the sensitivities of 159 Ps. cubensis isolates to Y18501 were determined, with EC50 values ranging from 0.001 to 11.785 µg/mL, indicating that a Y18501-resistant subpopulation has appeared in the field. Ten Y18501-resistant mutants were obtained by fungicide adaptation and displayed fitness equal to or stronger than their parental isolates, which suggests that the resistance risk of Ps. cubensis to Y18501 is high. The consecutive applications of Y18501 in the field resulted in the rapid resistance of Ps. cubensis and decreased control efficacy of cucumber downy mildew (CDM), which could be alleviated by compounding with mancozeb. A positive cross-resistance was detected between Y18501 and oxathiapiprolin. The amino acid substitutions G705V, L798W, and I812F in PscORP1 conferred resistance to Y18501 in Ps. cubensis, which was validated by molecular docking and molecular dynamics simulations.


Assuntos
Oomicetos , Peronospora , Mutação Puntual , Simulação de Acoplamento Molecular , Doenças das Plantas/genética , Peronospora/genética
8.
J Agric Food Chem ; 71(8): 3694-3704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802617

RESUMO

Fusarium fujikuroi is one of the dominant phytopathogenic fungi causing rice bakanae disease worldwide. Cyclobutrifluram is a novel succinate dehydrogenase inhibitor (SDHI), which shows strong inhibitory activity against F. fujikuroi. The baseline sensitivity of 112 F. fujikuroi to cyclobutrifluram was determinated with a mean EC50 value of 0.025 µg/mL. A total of 17 resistant mutants were obtained by fungicide adaptation and displayed equal or slightly weaker fitness than parental isolates, which suggests that the resistance risk of F. fujikuroi to cyclobutrifluram is medium. A positive cross-resistance was detected between cyclobutrifluram and fluopyram. The amino acid substitutions H248L/Y of FfSdhB and G80R or A83V of FfSdhC2 conferred cyclobutrifluram resistance in F. fujikuroi, which was validated by molecular docking and protoplast transformation. The results indicate that the affinity between cyclobutrifluram and FfSdhs obviously decreased after point mutations, causing the resistance of F. fujikuroi.


Assuntos
Fungicidas Industriais , Fusarium , Oryza , Ácido Succínico , Succinato Desidrogenase/genética , Simulação de Acoplamento Molecular , Fusarium/genética , Mutação , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Oryza/microbiologia
9.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066290

RESUMO

Living systems contain various functional membraneless organelles that can segregate selective proteins and RNAs via liquid-liquid phase separation. Inspired by nature, many synthetic compartments have been engineered in vitro and in living cells, mostly focused on protein-scaffolded systems. Herein, we introduce a nature-inspired genetically encoded RNA tag to program cellular condensate formations and recruit non-phase-transition target RNAs to achieve functional modulation. In our system, different lengths of CAG-repeat tags were tested as the self-assembled scaffold to drive multivalent condensate formation. Various selective target messenger RNAs and noncoding RNAs can be compartmentalized into these condensates. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes, and densities of these cellular RNA condensates. The regulation functions of these CAG-repeat tags on the cellular RNA localization, lifetime, RNA-protein interactions, and gene expression have also been investigated. Considering the importance of RNA condensation in both health and disease conditions, these genetically encodable modular and self-assembled tags can be potentially widely used for chemical biology and synthetic biology studies.

10.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131625

RESUMO

Single-cell detection of multiple target analytes is an important goal in cell biology. However, due to the spectral overlap of common fluorophores, multiplexed fluorescence imaging beyond two-to-three targets inside living cells remains a technical challenge. Herein, we introduce a multiplexed imaging strategy that enables live-cell target detection via sequential rounds of imaging-and-stripping process, which is named as "sequential Fluorogenic RNA Imaging-Enabled Sensor" (seqFRIES). In seqFRIES, multiple orthogonal fluorogenic RNA aptamers are genetically encoded inside cells, and then the corresponding cell membrane permeable dye molecules are added, imaged, and rapidly removed in consecutive detection cycles. As a proof-of-concept, we have identified in this study five in vitro orthogonal fluorogenic RNA aptamer/dye pairs (>10-fold higher fluorescence signals), four of which can be used for highly orthogonal and multiplexed imaging in living bacterial and mammalian cells. After further optimizing the cellular fluorescence activation and deactivation kinetics of these RNA/dye pairs, the whole four-color semi-quantitative seqFRIES process can now be completed in ~20 min. Meanwhile, seqFRIES-mediated simultaneous detection of two critical signaling molecules, guanosine tetraphosphate and cyclic diguanylate, was also achieved within individual living cells. We expect our validation of this new seqFRIES concept here will facilitate the further development and potential broad usage of these orthogonal fluorogenic RNA/dye pairs for highly multiplexed and dynamic cellular imaging and cell biology studies.

11.
Front Microbiol ; 13: 811132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651492

RESUMO

Although sterols play an important role in most eukaryotes, some oomycetes, including Phytophthora spp., have lost the sterol synthesis pathway. Nevertheless, the ERG3 gene encoding C-5 sterol desaturase in the sterol synthesis pathway is still present in the genomes of Phytophthora spp. Phytophthora capsici, a destructive pathogen with a broad range of plant hosts, poses a significant threat to the production of agriculture. This study focused on the ERG3 gene in P. capsici (PcERG3) and explored its function in this pathogen. It showed that the PcERG3 gene could be expressed in all tested developmental stages of P. capsici, with sporangium and mycelium displaying higher expression levels. A potential substrate of Erg3 (stellasterol) was used to treat the P. capsici wild-type strain and a PcERG3Δ transformant, and their sterol profiles were determined by GC-MS. The wild-type strain could convert stellasterol into the down-stream product while the transformant could not, indicating that PcErg3 retains the C-5 sterol desaturase activity. By comparing the biological characteristics of different strains, it was found that PcERG3 is not important for the development of P. capsici. The pathogenicity of the PcERG3Δ transformants and the wild-type strain was comparable, suggesting that PcERG3 is not necessary for the interaction between P. capsici and its hosts. Further investigations revealed that the PcERG3Δ transformants and the wild-type strain displayed a similar level of tolerance to external adversities such as unsuitable temperatures, high osmotic pressures, and intemperate pH, signifying that PcERG3 is not essential for P. capsici to cope with these environmental stresses.

12.
Open Biol ; 12(4): 210282, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382565

RESUMO

The de novo biosynthesis of sterols is critical for the majority of eukaryotes; however, some organisms lack this pathway, including most oomycetes. Phytophthora spp. are sterol auxotrophic but, remarkably, have retained a few genes encoding enzymes in the sterol biosynthesis pathway. Here, we show that PcDHCR7, a gene in Phytophthora capsici predicted to encode Δ7-sterol reductase, displays multiple functions. When expressed in Saccharomyces cerevisiae, PcDHCR7 showed the Δ7-sterol reductase activity. Knocking out PcDHCR7 in P. capsici resulted in loss of the capacity to transform ergosterol into brassicasterol, which means PcDHCR7 has the Δ7-sterol reductase activity in P. capsici itself. This enables P. capsici to transform sterols recruited from the environment for better use. The biological characteristics of ΔPcDHCR7 transformants were compared with those of the wild-type strain and a PcDHCR7 complemented transformant, and the results showed that PcDHCR7 plays a key role in mycelium development and pathogenicity of zoospores. Further analysis of the transcriptome indicated that the expression of many genes changed in the ΔPcDHCR7 transformant, which involve in different biological processes. It is possible that P. capsici compensates for the defects caused by the loss of PcDHCR7 by remodelling its transcriptome.


Assuntos
Phytophthora , Micélio/metabolismo , Oxirredutases , Phytophthora/genética , Doenças das Plantas/genética , Esteróis/metabolismo , Virulência
13.
Front Microbiol ; 12: 673784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690942

RESUMO

Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae's response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.

14.
J Agric Food Chem ; 69(40): 11794-11803, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605240

RESUMO

SYP-34773 is a pyrimidinamine derivative and a novel fungicide modified from diflumetorim. This study determined the antimicrobial spectrum of SYP-34773, which showed it could strongly inhibit the growth of some important plant pathogens including fungi and oomycetes. In particular, Phytophthora infestans is an oomycete sensitive to SYP-34773, and the mycelium growth stage was found to be the most sensitive stage, with an EC50 value of 0.2030 µg/mL. At a concentration of 200 µg/mL, SYP-34773 displayed an excellent control efficacy of 69.55% and 81.48% against potato and tomato blight disease caused by P. infestans under field conditions, respectively. Mode of action investigations showed that this fungicide could cause severe ultrastructure damage to the mycelia of P. infestans, inhibit its respiration, and increase the cell membrane permeability of this pathogen. The results of this study could provide useful information for the fungicide registration and application of SYP-34773 as a novel fungicide.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Fungicidas Industriais/farmacologia , Doenças das Plantas
15.
J Agric Food Chem ; 68(47): 13651-13660, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191734

RESUMO

R034-1 is a new member of the piperidinyl thiazole isoxazoline class of fungicides that shows high activity against most plant-pathogenic oomycetes and could effectively inhibit several developmental stages of Phytophthora capsici. Here, the potential resistance risk for R034-1 was evaluated in P. capsici. The baseline sensitivities of 135 isolates to R034-1 showed a unimodal curve, with a mean EC50 value of 0.004 µg/mL. Twelve resistant mutants were generated by fungicide adaptation and displayed lower fitness compared to parental isolates, which suggests that the resistance risk of P. capsici to R034-1 is low. R034-1 and oxathiapiprolin are structurally related, and resistant isolates display cross-resistance to both compounds, suggesting that these fungicides may target the same oxysterol binding protein. Comparison of PcORP1 genes in the resistant mutants and their parental isolates revealed (N767S, N767I, and G700V) amino acid substitutions in the R034-1 resistant mutant. Causality was functionally validated using site-directed mutagenesis of the target gene using the CRISPR/Cas9 system.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Phytophthora/genética , Doenças das Plantas , Mutação Puntual , Tiazóis
16.
J Proteomics ; 221: 103776, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32268220

RESUMO

Phytophthora sojae is a widely distributed, destructive oomycete plant pathogen that has been developed as a model for oomycete biology. Given the important but limited reports on the comparison of the sexual and asexual stages in Phytophthora, we performed a large-scale quantitative proteomics study on two key asexual life stages of P. sojae-the mycelium and cyst-as well as on the oospore, which is a key sexual stage. Over 29,631 peptides from 4688 proteins were analyzed. Briefly, 445 proteins, 624 proteins, and 579 proteins were defined as differentially quantified proteins in cyst vs mycelium, oospore vs cyst, and oospore vs mycelium comparisons, respectively (|log2 fold change| > 1 and P < 0.05). Compared to the mycelium and oospore, fatty acid and nitrogen metabolism were specifically induced in cysts. In oospores, the up-regulated proteins focused on RNA transport and protein processing in endoplasmic reticulum, indicating translation, folding, and the secretion of core cellular or stage-specific proteins active in oospores, which might be used for oospore germination. The data presented expand our knowledge of pathways specifically linked to asexual and sexual stages of this pathogen. BIOLOGICAL SIGNIFICANCE: The sexual spores (oospores) in oomycetes have thick cell walls and can survive in the soil for years, thus providing a primary source and allowing the reinfection of their host plant in subsequent growing seasons. However, the proteomic study on oospores remains very limited as they are generally considered to be dormant. In the present study, we successfully isolated oospores, and performed a large-scale comparative quantitative proteomics study on this key sexual stage and two representative asexual stages of P. sojae. The results provide an improved understanding of P. sojae biology and suggest potential metabolic targets for disease control at the three different developmental stages in oomycetes.


Assuntos
Cistos , Phytophthora , Humanos , Doenças das Plantas , Proteômica , Esporos
17.
Front Microbiol ; 11: 185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194514

RESUMO

Sensitivities of Phytophthora capsici to fluopicolide were investigated in vitro, with results showing that fluopicolide had strong inhibitory activities on each development stage of P. capsici, in particular on the motility of the zoospore. The potential resistance risk for fluopicolide in P. capsici was evaluated. The baseline sensitivities to fluopicolide of 146 isolates obtained from 28 provinces in China were initially determined, and the 50% inhibition of mycelial growth (EC50) distribution was a unimodal curve with a mean of 0.17 µg/ml. A series of fluopicolide-resistant mutants of P. capsici were obtained by fungicide adaptation, and their biological traits were determined. Most of the resistant mutants showed similar favorable fitness in mycelial growth, sporangium and zoospore production, cystospore germination, and pathogenicity compared with their sensitive parents, with few exceptions. Additionally, the cross-resistance result indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide (LH-2010A). These results suggest a moderate to high resistance risk of P. capsici to fluopicolide in China.

18.
Front Microbiol ; 10: 2402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708886

RESUMO

Phytophthora, a genus of oomycetes, contains many devastating plant pathogens, which cause substantial economic losses worldwide. Recently, CRISPR/Cas9-based genome editing tool was introduced into Phytophthora to delineate the functionality of individual genes. The available selection markers for Phytophthora transformation, however, are limited, which can restrain transgenic manipulation in some cases. We hypothesized that PcMuORP1, an endogenous fungicide resistance gene from P. capsici that confers resistance to the fungicide oxathiapiprolin via an altered target site in the ORP1 protein, could be used as an alternative marker. To test this hypothesis, the gene PcMuORP1 was introduced into the CRISPR/Cas9 system and complementation of a deleted gene in P. capsici was achieved using it as a selection marker. All of the oxathiapiprolin-resistant transformants were confirmed to contain the marker gene, indicating that the positive screening rate was 100%. The novel selection marker could also be used in other representative Phytophthora species including P. sojae and P. litchii, also with 100% positive screening rate. Furthermore, comparative studies indicated that use of PcMuORP1 resulted in a much higher efficiency of screening compared to the conventional selection marker NPT II, especially in P. capsici. Successive subculture and asexual reproduction in the absence of selective pressure were found to result in the loss of the selection marker from the transformants, which indicates that the PcMuORP1 gene would have little long term influence on the fitness of transformants and could be reused as the selection marker in subsequent projects. Thus, we have created an alternative selection marker for Phytophthora transformation by using a fungicide resistance gene, which would accelerate functional studies of genes in these species.

19.
Colloids Surf B Biointerfaces ; 182: 110313, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306830

RESUMO

Intelligent reversible crosslinked micelles that have a good balance of structure stability in normal tissue and controlled drug release responded to the tumor microenvironment are highly promising novel drug delivery systems. However, to date, there have been very few reports about mesoscale simulations of drug-loaded polymeric reversible crosslinked micelles. Here, dissipative particle dynamics (DPD) simulation, the nearest-neighbor bonding principle, and the nearest media-bead bond breaking principle were used to investigate the influence of physiological environment along with low tumor pH and reduction microenvironment on the stability and doxorubicin (DOX) distribution of the star polymer [PCL-b-P(HEMA-Se-Se˜)-b-PPEGMA]6 diselenide crosslinked micelles with different diselenide crosslinking levels (CLs). The self-assembly process results obtained by DPD simulations reveal the formation of three-layer spherical micelles with the loaded DOX mainly distributed at the interfacial regions of the inner PCL core and middle HEMA layer. The structural stability and DOX loading capacity of the micelles can be improved by appropriately increasing the CL based on the nearest-neighbor bonding principle due to the effect of the pressure exerted by the crosslink that squeezes the loaded drugs from the intermediate and interfacial layers into the micelle core. Furthermore, the effect of breaking of the diselenide bond on the drug release properties was investigated through the use of the nearest media-bead bond breaking principle. A low CL gives rise to intense drug release, increasing the toxic side effects on the system. With the increase in the CL, the micelles show the transformation from local crosslinking to compact crosslinking, leading to slower drug release. Therefore, this work can provide some guidance on the mesoscale for the structural design and controlled construction of reversible crosslinked micelles for smart drug delivery systems.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos , Modelos Químicos , Compostos de Selênio/química , Simulação por Computador , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Metacrilatos/química , Micelas , Ácidos Polimetacrílicos/química
20.
J Colloid Interface Sci ; 528: 135-144, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29843061

RESUMO

The development of nanomaterials as highly efficient contrast agents for tumor computed tomography (CT) imaging still remains a huge challenge. In this study, a novel and facile approach to fabricate unimolecular micelles-stablized gold nanoparticles (AuNPs) without external reductant for in vitro targeted CT imaging was described. Amphiphilic 21-arm star-like polymers ß-cyclodextrin-g-{poly(2-(dimethylamino)ethyl methacrylate)-poly(2-hydroxyethyl methacrylate)-poly[poly(ethylene glycol) methyl ether methacrylate]} [ß-CD-g-(PDMA-b-PHEMA-b-PPEGMA)] was firstly synthesized and proved to form unimolecular core-middle layer-shell-type micelles in water through experimental and computer simulation results. Taking advantage of the reducing groups of PDMA block, AuNPs were decorated in the micellar PDMA block because of the in situ reduction of gold ions, which were absorbed by the PDMA chains in the core layer with a narrow nanoparticle size distribution. This strategy could prevent aggregation of AuNPs, which were capable of being employing as a highly effective probe for specific CT imaging in vitro. Importantly, the ß-CD-g-(PDMA-b-PHEMA-b-PPEGMA)/AuNPs incubated with HepG2 cells, displayed more intense X-ray attenuation property (>37%) than conventional iodine-based CT imaging agent (Omnipaque) and also possessed a satisfying cytocompatibility in the given concentration range. The facile fabrication procedures and the efficiency of CT imaging render the novel hybrid unimolecular micelles to become potent candidates for applications in tumor-targeted CT imaging.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Micelas , beta-Ciclodextrinas/química , Células Hep G2 , Humanos , Nanopartículas Metálicas/ultraestrutura , Metacrilatos/química , Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Poli-Hidroxietil Metacrilato/química , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA