Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 875: 791-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611034

RESUMO

Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.


Assuntos
Acústica , Comportamento Animal/fisiologia , Cetáceos/fisiologia , Militares , Som , Animais , Florida , Geografia , Estações do Ano , Especificidade da Espécie , Vocalização Animal/fisiologia
2.
J Acoust Soc Am ; 134(3): 2589-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23968056

RESUMO

Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.


Assuntos
Acústica/instrumentação , Ecolocação , Ecossistema , Monitoramento Ambiental/instrumentação , Biologia Marinha/instrumentação , Transdutores , Vocalização Animal , Baleias/fisiologia , Animais , California , Mergulho , Monitoramento Ambiental/métodos , Desenho de Equipamento , Biologia Marinha/métodos , Oceanos e Mares , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Baleias/psicologia
3.
J Acoust Soc Am ; 133(6): 4321-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23742381

RESUMO

Echolocation signals from Baird's beaked whales were recorded during visual and acoustic shipboard surveys of cetaceans in the California Current ecosystem and with autonomous, long-term recorders in the Southern California Bight. The preliminary measurement of the visually validated Baird's beaked whale echolocation signals from towed array data were used as a basis for identifying Baird's signals in the autonomous recorder data. Two distinct signal types were found, one being a beaked whale-like frequency modulated (FM) pulse, the other being a dolphin-like broadband click. The median FM inter-pulse interval was 230 ms. Both signal types showed a consistent multi-peak structure in their spectra with peaks at ~9, 16, 25, and 40 kHz. Depending on signal type, as well as recording aspect and distance to the hydrophone, these peaks varied in relative amplitude. The description of Baird's echolocation signals will allow for studies of their distribution and abundance using towed array data without associated visual sightings and from autonomous seafloor hydrophones.


Assuntos
Ecolocação , Espectrografia do Som , Vocalização Animal , Baleias , Animais , California , Sistemas de Informação Geográfica
4.
J Acoust Soc Am ; 134(3): 2293-301, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967959

RESUMO

Beaked whale echolocation signals are mostly frequency-modulated (FM) upsweep pulses and appear to be species specific. Evolutionary processes of niche separation may have driven differentiation of beaked whale signals used for spatial orientation and foraging. FM pulses of eight species of beaked whales were identified, as well as five distinct pulse types of unknown species, but presumed to be from beaked whales. Current evidence suggests these five distinct but unidentified FM pulse types are also species-specific and are each produced by a separate species. There may be a relationship between adult body length and center frequency with smaller whales producing higher frequency signals. This could be due to anatomical and physiological restraints or it could be an evolutionary adaption for detection of smaller prey for smaller whales with higher resolution using higher frequencies. The disadvantage of higher frequencies is a shorter detection range. Whales echolocating with the highest frequencies, or broadband, likely lower source level signals also use a higher repetition rate, which might compensate for the shorter detection range. Habitat modeling with acoustic detections should give further insights into how niches and prey may have shaped species-specific FM pulse types.


Assuntos
Ecolocação , Vocalização Animal , Baleias/fisiologia , Acústica , Adaptação Fisiológica , Animais , Evolução Biológica , Comportamento Alimentar , Comportamento Predatório , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA