Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576258

RESUMO

Ocular hypertension (OHT) is a serious adverse effect of the widely prescribed glucocorticoid (GC) therapy and, if left undiagnosed, it can lead to glaucoma and complete blindness. Previously, we have shown that the small chemical chaperone, sodium-4-phenylbutyrate (PBA), rescues GC-induced OHT by reducing ocular endoplasmic reticulum (ER) stress. However, the exact mechanism of how PBA rescues GC-induced OHT is not completely understood. The trabecular meshwork (TM) is a filter-like specialized contractile tissue consisting of TM cells embedded within extracellular matrix (ECM) that controls intraocular pressure (IOP) by constantly regulating aqueous humor (AH) outflow. Induction of abnormal ECM deposition in TM is a hallmark of GC-induced OHT. Here, we investigated whether PBA reduces GC-induced OHT by degrading abnormal ECM deposition in TM using mouse model of GC-induced OHT, ex vivo cultured human TM tissues and primary human TM cells. We show that topical ocular eye drops of PBA (1%) significantly lowers elevated IOP in mouse model of GC-induced OHT. Importantly, PBA prevents synthesis and deposition of GC-induced ECM in TM. We report for the first time that PBA can degrade existing abnormal ECM in normal human TM cells/tissues by inducing matrix metalloproteinase (MMP)9 expression and activity. Furthermore, inhibition of MMPs activity by chemical-inhibitor (minocycline) abrogated PBA's effect on ECM reduction and its associated ER stress. Our study indicates a non-chaperone activity of PBA via activation of MMP9 that degrades abnormal ECM accumulation in TM.


Assuntos
Matriz Extracelular/metabolismo , Oftalmopatias/tratamento farmacológico , Metaloproteinase 9 da Matriz/metabolismo , Hipertensão Ocular/tratamento farmacológico , Fenilbutiratos/farmacologia , Animais , Humor Aquoso/metabolismo , Córnea/patologia , Estresse do Retículo Endoplasmático , Ativação Enzimática , Fibronectinas/química , Fibronectinas/metabolismo , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/farmacologia , Sódio/química , Malha Trabecular
2.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830390

RESUMO

Elevated intraocular pressure (IOP) is a major risk factor in developing primary open angle glaucoma (POAG), which is the most common form of glaucoma. Transforming growth factor-beta 2 (TGFß2) is a pro-fibrotic cytokine that plays an important role in POAG pathogenesis. TGFß2 induced extracellular matrix (ECM) production, deposition and endoplasmic reticulum (ER) stress in the trabecular meshwork (TM) contribute to increased aqueous humor (AH) outflow resistance and IOP elevation. Drugs which alter the glaucomatous fibrotic changes and ER stress in the TM may be effective in reducing ocular hypertension. Astragaloside IV (AS.IV), a novel saponin isolated from the roots of Astragalus membranaceus, has demonstrated antifibrotic and ER stress lowering effects in various tissues during disease conditions. However, the effect of AS.IV on glaucomatous TM fibrosis, ER stress and ocular hypertension has not been studied. Primary human TM cells treated with AS.IV decreased TGFß2 induced ECM (FN, Col-I) deposition and ER stress (KDEL, ATF4 and CHOP). Moreover, AS.IV treatment reduced TGFß2 induced NF-κB activation and αSMA expression in TM cells. We found that AS.IV treatment significantly increased levels of matrix metalloproteases (MMP9 and MMP2) and MMP2 enzymatic activity, indicating that the antifibrotic effects of AS.IV are mediated via inhibition of NF-κB and activation of MMPs. AS.IV treatment also reduced ER stress in TM3 cells stably expressing mutant myocilin. Interestingly, the topical ocular AS.IV eye drops (1 mM) significantly decreased TGFß2 induced ocular hypertension in mice, and this was associated with a decrease in FN, Col-1 (ECM), KDEL (ER stress) and αSMA in mouse TM tissues. Taken together, the results suggest that AS.IV prevents TGFß2 induced ocular hypertension by modulating ECM deposition and ER stress in the TM.


Assuntos
Glaucoma de Ângulo Aberto/tratamento farmacológico , Hipertensão Ocular/tratamento farmacológico , Saponinas/farmacologia , Fator de Crescimento Transformador beta2/genética , Triterpenos/farmacologia , Animais , Humor Aquoso/efeitos dos fármacos , Modelos Animais de Doenças , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Camundongos , Hipertensão Ocular/genética , Hipertensão Ocular/patologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia
3.
FEBS J ; 290(22): 5248-5269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36877952

RESUMO

Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Genômica , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA