Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Infect Dis ; 77(6): 816-826, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207367

RESUMO

BACKGROUND: Identifying individuals with a higher risk of developing severe coronavirus disease 2019 (COVID-19) outcomes will inform targeted and more intensive clinical monitoring and management. To date, there is mixed evidence regarding the impact of preexisting autoimmune disease (AID) diagnosis and/or immunosuppressant (IS) exposure on developing severe COVID-19 outcomes. METHODS: A retrospective cohort of adults diagnosed with COVID-19 was created in the National COVID Cohort Collaborative enclave. Two outcomes, life-threatening disease and hospitalization, were evaluated by using logistic regression models with and without adjustment for demographics and comorbidities. RESULTS: Of the 2 453 799 adults diagnosed with COVID-19, 191 520 (7.81%) had a preexisting AID diagnosis and 278 095 (11.33%) had a preexisting IS exposure. Logistic regression models adjusted for demographics and comorbidities demonstrated that individuals with a preexisting AID (odds ratio [OR], 1.13; 95% confidence interval [CI]: 1.09-1.17; P < .001), IS exposure (OR, 1.27; 95% CI: 1.24-1.30; P < .001), or both (OR, 1.35; 95% CI: 1.29-1.40; P < .001) were more likely to have a life-threatening disease. These results were consistent when hospitalization was evaluated. A sensitivity analysis evaluating specific IS revealed that tumor necrosis factor inhibitors were protective against life-threatening disease (OR, 0.80; 95% CI: .66-.96; P = .017) and hospitalization (OR, 0.80; 95% CI: .73-.89; P < .001). CONCLUSIONS: Patients with preexisting AID, IS exposure, or both are more likely to have a life-threatening disease or hospitalization. These patients may thus require tailored monitoring and preventative measures to minimize negative consequences of COVID-19.


Assuntos
Autoimunidade , COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , Hospitalização , Imunossupressores/uso terapêutico
2.
J Virol ; 96(2): e0106321, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669512

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Assuntos
COVID-19/imunologia , Células-Tronco Pluripotentes Induzidas , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia
3.
Nat Commun ; 15(1): 7968, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261481

RESUMO

Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.


Assuntos
Cardiotoxicidade , Perfilação da Expressão Gênica , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Transcriptoma , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/toxicidade , Perfilação da Expressão Gênica/métodos , Cardiotoxicidade/genética , Cardiotoxicidade/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Linhagem Celular , Análise de Célula Única/métodos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
4.
medRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778264

RESUMO

Importance: Identifying individuals with a higher risk of developing severe COVID-19 outcomes will inform targeted or more intensive clinical monitoring and management. Objective: To examine, using data from the National COVID Cohort Collaborative (N3C), whether patients with pre-existing autoimmune disease (AID) diagnosis and/or immunosuppressant (IS) exposure are at a higher risk of developing severe COVID-19 outcomes. Design setting and participants: A retrospective cohort of 2,453,799 individuals diagnosed with COVID-19 between January 1 st , 2020, and June 30 th , 2022, was created from the N3C data enclave, which comprises data of 15,231,849 patients from 75 USA data partners. Patients were stratified as those with/without a pre-existing diagnosis of AID and/or those with/without exposure to IS prior to COVID-19. Main outcomes and measures: Two outcomes of COVID-19 severity, derived from the World Health Organization severity score, were defined, namely life-threatening disease and hospitalization. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using logistic regression models with and without adjustment for demographics (age, BMI, gender, race, ethnicity, smoking status), and comorbidities (cardiovascular disease, dementia, pulmonary disease, liver disease, type 2 diabetes mellitus, kidney disease, cancer, and HIV infection). Results: In total, 2,453,799 (16.11% of the N3C cohort) adults (age> 18 years) were diagnosed with COVID-19, of which 191,520 (7.81%) had a prior AID diagnosis, and 278,095 (11.33%) had a prior IS exposure. Logistic regression models adjusted for demographic factors and comorbidities demonstrated that individuals with a prior AID (OR = 1.13, 95% CI 1.09 - 1.17; p =2.43E-13), prior exposure to IS (OR= 1.27, 95% CI 1.24 - 1.30; p =3.66E-74), or both (OR= 1.35, 95% CI 1.29 - 1.40; p =7.50E-49) were more likely to have a life-threatening COVID-19 disease. These results were confirmed after adjusting for exposure to antivirals and vaccination in a cohort subset with COVID-19 diagnosis dates after December 2021 (AID OR = 1.18, 95% CI 1.02 - 1.36; p =2.46E-02; IS OR= 1.60, 95% CI 1.41 - 1.80; p =5.11E-14; AID+IS OR= 1.93, 95% CI 1.62 - 2.30; p =1.68E-13). These results were consistent when evaluating hospitalization as the outcome and also when stratifying by race and sex. Finally, a sensitivity analysis evaluating specific IS revealed that TNF inhibitors were protective against life-threatening disease (OR = 0.80, 95% CI 0.66-0.96; p =1.66E-2) and hospitalization (OR = 0.80, 95% CI 0.73 - 0.89; p =1.06E-05). Conclusions and Relevance: Patients with pre-existing AID, exposure to IS, or both are more likely to have a life-threatening disease or hospitalization. These patients may thus require tailored monitoring and preventative measures to minimize negative consequences of COVID-19.

5.
JTCVS Open ; 14: 214-251, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425442

RESUMO

Background: The Society of Thoracic Surgeons risk scores are widely used to assess risk of morbidity and mortality in specific cardiac surgeries but may not perform optimally in all patients. In a cohort of patients undergoing cardiac surgery, we developed a data-driven, institution-specific machine learning-based model inferred from multi-modal electronic health records and compared the performance with the Society of Thoracic Surgeons models. Methods: All adult patients undergoing cardiac surgery between 2011 and 2016 were included. Routine electronic health record administrative, demographic, clinical, hemodynamic, laboratory, pharmacological, and procedural data features were extracted. The outcome was postoperative mortality. The database was randomly split into training (development) and test (evaluation) cohorts. Models developed using 4 classification algorithms were compared using 6 evaluation metrics. The performance of the final model was compared with the Society of Thoracic Surgeons models for 7 index surgical procedures. Results: A total of 6392 patients were included and described by 4016 features. Overall mortality was 3.0% (n = 193). The XGBoost algorithm using only features with no missing data (336 features) yielded the best-performing predictor. When applied to the test set, the predictor performed well (F-measure = 0.775; precision = 0.756; recall = 0.795; accuracy = 0.986; area under the receiver operating characteristic curve = 0.978; area under the precision-recall curve = 0.804). eXtreme Gradient Boosting consistently demonstrated improved performance over the Society of Thoracic Surgeons models when evaluated on index procedures within the test set. Conclusions: Machine learning models using institution-specific multi-modal electronic health records may improve performance in predicting mortality for individual patients undergoing cardiac surgery compared with the standard-of-care, population-derived Society of Thoracic Surgeons models. Institution-specific models may provide insights complementary to population-derived risk predictions to aid patient-level decision making.

6.
Stem Cell Reports ; 16(12): 3036-3049, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34739849

RESUMO

A library of well-characterized human induced pluripotent stem cell (hiPSC) lines from clinically healthy human subjects could serve as a useful resource of normal controls for in vitro human development, disease modeling, genotype-phenotype association studies, and drug response evaluation. We report generation and extensive characterization of a gender-balanced, racially/ethnically diverse library of hiPSC lines from 40 clinically healthy human individuals who range in age from 22 to 61 years. The hiPSCs match the karyotype and short tandem repeat identities of their parental fibroblasts, and have a transcription profile characteristic of pluripotent stem cells. We provide whole-genome sequencing data for one hiPSC clone from each individual, genomic ancestry determination, and analysis of mendelian disease genes and risks. We document similar transcriptomic profiles, single-cell RNA-sequencing-derived cell clusters, and physiology of cardiomyocytes differentiated from multiple independent hiPSC lines. This extensive characterization makes this hiPSC library a valuable resource for many studies on human biology.


Assuntos
Saúde , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Sinalização do Cálcio , Diferenciação Celular , Linhagem Celular , Células Clonais , Etnicidade , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Risco , Adulto Jovem
7.
Lancet Digit Health ; 2(10): e516-e525, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32984797

RESUMO

Background: The COVID-19 pandemic has affected millions of individuals and caused hundreds of thousands of deaths worldwide. Predicting mortality among patients with COVID-19 who present with a spectrum of complications is very difficult, hindering the prognostication and management of the disease. We aimed to develop an accurate prediction model of COVID-19 mortality using unbiased computational methods, and identify the clinical features most predictive of this outcome. Methods: In this prediction model development and validation study, we applied machine learning techniques to clinical data from a large cohort of patients with COVID-19 treated at the Mount Sinai Health System in New York City, NY, USA, to predict mortality. We analysed patient-level data captured in the Mount Sinai Data Warehouse database for individuals with a confirmed diagnosis of COVID-19 who had a health system encounter between March 9 and April 6, 2020. For initial analyses, we used patient data from March 9 to April 5, and randomly assigned (80:20) the patients to the development dataset or test dataset 1 (retrospective). Patient data for those with encounters on April 6, 2020, were used in test dataset 2 (prospective). We designed prediction models based on clinical features and patient characteristics during health system encounters to predict mortality using the development dataset. We assessed the resultant models in terms of the area under the receiver operating characteristic curve (AUC) score in the test datasets. Findings: Using the development dataset (n=3841) and a systematic machine learning framework, we developed a COVID-19 mortality prediction model that showed high accuracy (AUC=0·91) when applied to test datasets of retrospective (n=961) and prospective (n=249) patients. This model was based on three clinical features: patient's age, minimum oxygen saturation over the course of their medical encounter, and type of patient encounter (inpatient vs outpatient and telehealth visits). Interpretation: An accurate and parsimonious COVID-19 mortality prediction model based on three features might have utility in clinical settings to guide the management and prognostication of patients affected by this disease. External validation of this prediction model in other populations is needed. Funding: National Institutes of Health.


Assuntos
COVID-19/mortalidade , Regras de Decisão Clínica , Fatores Etários , Idoso , COVID-19/patologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Cidade de Nova Iorque/epidemiologia , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco
8.
medRxiv ; 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32511520

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected over millions of individuals and caused hundreds of thousands of deaths worldwide. It can be difficult to accurately predict mortality among COVID-19 patients presenting with a spectrum of complications, hindering the prognostication and management of the disease. METHODS: We applied machine learning techniques to clinical data from a large cohort of 5,051 COVID-19 patients treated at the Mount Sinai Health System in New York City, the global COVID-19 epicenter, to predict mortality. Predictors were designed to classify patients into Deceased or Alive mortality classes and were evaluated in terms of the area under the receiver operating characteristic (ROC) curve (AUC score). FINDINGS: Using a development cohort (n=3,841) and a systematic machine learning framework, we identified a COVID-19 mortality predictor that demonstrated high accuracy (AUC=0.91) when applied to test sets of retrospective (n= 961) and prospective (n=249) patients. This mortality predictor was based on five clinical features: age, minimum O2 saturation during encounter, type of patient encounter (inpatient vs. various types of outpatient and telehealth encounters), hydroxychloroquine use, and maximum body temperature. INTERPRETATION: An accurate and parsimonious COVID-19 mortality predictor based on five features may have utility in clinical settings to guide the management and prognostication of patients affected by this disease.

9.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200140

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrate cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with SARS-CoV-2 in the presence of interleukins, with clinical findings, to investigate plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes, from healthy human subjects, with SARS-CoV-2 in the absence and presence of interleukins. We find that interleukin treatment and infection results in disorganization of myofibrils, extracellular release of troponin-I, and reduced and erratic beating. Although interleukins do not increase the extent, they increase the severity of viral infection of cardiomyocytes resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health system show that a significant portion of COVID-19 patients without prior history of heart disease, have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection can underlie the heart disease in COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA