Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(18): e202300266, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195016

RESUMO

Escherichia coli and other Enterobacteriaceae thrive in robust biofilm communities through the coproduction of curli amyloid fibers and phosphoethanolamine cellulose. Curli promote adhesion to abiotic surfaces and plant and human host tissues and are associated with pathogenesis in urinary tract infection and food-borne illness. The production of curli in the host has also been implicated in the pathogenesis of neurodegenerative diseases. We report that the natural product nordihydroguaiaretic acid (NDGA) is effective as a curlicide in E. coli. NDGA prevents CsgA polymerization in vitro in a dose-dependent manner. NDGA selectively inhibits cell-associated curli assembly and inhibits uropathogenic E. coli biofilm formation. More broadly, this work emphasizes the ability to evaluate and identify bioactive amyloid assembly inhibitors by using the powerful gene-directed amyloid biogenesis machinery in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Masoprocol/farmacologia , Polimerização , Amiloide/farmacologia , Proteínas Amiloidogênicas , Biofilmes , Proteínas de Bactérias/farmacologia
2.
Biopolymers ; 112(1): e23395, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894594

RESUMO

Bacterial biofilms are communities of bacteria entangled in a self-produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid-polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum-of-the-parts 13 C solid-state nuclear magnetic resonance (NMR) analysis to define the curli-to-pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well-studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid-air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic-associated) and the strain itself.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Celulose/química , Matriz Extracelular/química , Biomassa , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Etanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA