RESUMO
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid-liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the type of complexity in shape, size, and configuration. It is observed that the use of different aspect ratios of the microchannel width, presence of obstructions, flow and operating conditions, and fluid properties majorly affect the mixing characteristics and pressure drop in passive micromixers. A regime map for the micromixer selection based on optimization of mixing index (MI) and pressure drop has been identified based on the literature data for the Reynolds number (Re) range (1 ≤ Re ≤ 100). The map comprehensively summarizes the favorable, moderately favorable, or non-operable regimes of a micromixer. Further, regions for special applications of complex micromixer shapes and micromixers operating at low Re have been identified. Similarly, the operable limits for a micromixer based on pressure drop for Re range 0.1 < Re < 100,000 have been identified. A comparison of measured pressure drop with fundamentally derived analytical expressions show that Category 3 and 4 micromixers mostly have higher pressure drops, except for a few efficient ones. An MI regime map comprising diffusion, chaotic advection, and mixed advection-dominated zones has also been devised. An empirical correlation for pressure drop as a function of Reynolds number has been developed and a corresponding friction factor has been obtained. Predictions on heat and mass transfer based on analogies in micromixers have also been proposed.
RESUMO
Immiscible liquid-liquid flows in microchannels are used extensively in various chemical and biological lab-on-a-chip systems when it is very important to predict the expected flow pattern for a variety of fluids and channel geometries. Commonly, biological and other complex liquids express non-Newtonian properties in a dispersed phase. Features and behavior of such systems are not clear to date. In this paper, immiscible liquid-liquid flow in a T-shaped microchannel was studied by means of high-speed visualization, with an aim to reveal the shear-thinning effect on the flow patterns and slug-flow features. Three shear-thinning and three Newtonian fluids were used as dispersed phases, while Newtonian castor oil was a continuous phase. For the first time, the influence of the non-Newtonian dispersed phase on the transition from segmented to continuous flow is shown and quantitatively described. Flow-pattern maps were constructed using nondimensional complex We0.4·Oh0.6 depicting similarity in the continuous-to-segmented flow transition line. Using available experimental data, the proposed nondimensional complex is shown to be effectively applied for flow-pattern map construction when the continuous phase exhibits non-Newtonian properties as well. The models to evaluate an effective dynamic viscosity of a shear-thinning fluid are discussed. The most appropriate model of average-shear-rate estimation based on bulk velocity was chosen and applied to evaluate an effective dynamic viscosity of a shear-thinning fluid. For a slug flow, it was found that in the case of shear-thinning dispersed phase at low flow rates of both phases, a jetting regime of slug formation was established, leading to a dramatic increase in slug length.