Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 8(10): e76722, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146914

RESUMO

Dehairing is one of the highly polluting operations in the leather industry. The conventional lime-sulfide process used for dehairing produces large amounts of sulfide, which poses serious toxicity and disposal problems. This operation also involves hair destruction, a process that leads to increased chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solid (TSS) loads in the effluent. With these concerns in mind, enzyme-assisted dehairing has often been proposed as an alternative method. The main enzyme preparations so far used involved keratinases. The present paper reports on the purification of an extracellular keratinase (KERUS) newly isolated from Brevibacillus brevis strain US575. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 29121.11 Da. The sequence of the 27 N-terminal residues of KERUS showed high homology with those of Bacillus keratinases. Optimal activity was achieved at pH 8 and 40°C. Its thermoactivity and thermostability were upgraded in the presence of 5 mM Ca(2+). The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine protease family. KERUS displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency than NUE 12 MG and KOROPON® MK EG keratinases. The enzyme also exhibited powerful keratinolytic activity that made it able to accomplish the entire feather-biodegradation process on its own. The kerUS gene encoding KERUS was cloned, sequenced, and expressed in Escherichia coli. The biochemical properties of the extracellular purified recombinant enzyme (rKERUS) were similar to those of native KERUS. Overall, the findings provide strong support for the potential candidacy of this enzyme as an effective and eco-friendly alternative to the conventional chemicals used for the dehairing of rabbit, goat, sheep and bovine hides in the leather processing industry.


Assuntos
Brevibacillus/enzimologia , Cabelo/metabolismo , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Serina/metabolismo , Pele/metabolismo , Sequência de Aminoácidos , Animais , Biodegradação Ambiental/efeitos dos fármacos , Brevibacillus/genética , Clonagem Molecular , Estabilidade Enzimática/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise , Cinética , Metais/farmacologia , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Filogenia , Inibidores de Proteases/farmacologia , RNA Ribossômico 16S/genética , Proteínas Recombinantes/metabolismo , Substâncias Redutoras/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Pele/efeitos dos fármacos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA