Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6137, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29643452

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 7(1): 11091, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894186

RESUMO

To tackle the problem of insecticide resistance, all resistance mechanisms need to be studied. This study investigated the involvement of the cuticle in pyrethroid resistance in a strain of Anopheles gambiae, MRS, free of kdr mutations. Bioassays revealed MRS to be resistant to pyrethroids and DDT, indicated by increasing knockdown times and resistance ratios. Moreover, biochemical analysis indicated that metabolic resistance based on enhanced CYP450 activity may also play a role. Insecticide penetration assays showed that there were significantly lower amounts of insecticide in the MRS strain than in the susceptible control. Analysis of the levels of the selected transcripts by qPCR showed that CYP6M2, a major pyrethroid metaboliser, CYP4G16, a gene implicated in resistance via its contribution to the biosynthesis of elevated epicuticular hydrocarbons that delay insecticide uptake, and the cuticle genes CPAP3-E and CPLCX1 were upregulated after insecticide exposure. Other metabolic (CYP6P3, GSTe2) and cuticle (CPLCG3, CPRs) genes were also constitutively upregulated. Microscopic analysis showed that the cuticle layers of the MRS strain were significantly thicker than those of the susceptible strain. This study allowed us to assess the contribution made by the cuticle and metabolic mechanisms to pyrethroid resistance in Anopheles gambiae without target-site mutations.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/metabolismo , Enzimas/metabolismo , Inativação Metabólica/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Piretrinas/farmacologia , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Ativação Enzimática , Enzimas/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mosquitos Vetores , Nitrilas/metabolismo , Permeabilidade , Piretrinas/metabolismo
3.
Parasit Vectors ; 9(1): 385, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27378358

RESUMO

BACKGROUND: Large-scale implementation of Indoor Residual Spraying and Insecticide Treated Nets has been implemented in Plateau Department, Benin between 2011 and 2014. The purpose of this study was to monitor the frequency and mechanisms of pyrethroid resistance in malaria vectors following the implementation of vector control tools for malaria prevention. METHODS: Anopheles larvae were collected in 13 villages twice a year from 2012 to 2014. WHO tube tests were used to assess the phenotypic resistance of each population to 0.05 % deltamethrin. Sibling species within Anopheles gambiae complex were identified by PCR techniques. Taqman and biochemical assays were performed to identify the presence of kdr mutations in individual mosquitoes and to detect any increase in the activity of enzymes putatively involved in insecticide metabolism (oxidases, esterase and glutathione-S-transferases). Quantitative real time PCR was used to measure the expression of three metabolic genes involved in pyrethroid resistance (CYP6P3, CYP6M2 and GSTD3). RESULTS: Anopheles populations showed < 90 % mortality to deltamethrin in all villages and at all time points. The 1014 F kdr allele frequency was close to fixation (> 0.9) over the sampling periods in both An. gambiae and An. coluzzii. Biochemical assays showed higher activities of alpha esterase and GST in field malaria vector populations compared to susceptible mosquitoes. qPCR assays showed a significant increase of CYP6P3, CYP6M2 GSTD3 expression in An. gambiae after a three-year implementation of LLINs. CONCLUSION: The study confirmed that deltamethrin resistance is widespread in malaria vectors in Southern Benin. We suspect that the increase in deltamethrin resistance between 2012 and 2014 resulted from an increased expression of metabolic detoxification genes (CYP6M2 and CYP6P3) rather than from kdr mutations. It is urgent to evaluate further the impact of metabolic resistance on the efficacy of vector control interventions using pyrethroid insecticides.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Piretrinas/farmacologia , Animais , Anopheles/enzimologia , Anopheles/genética , Benin/epidemiologia , Feminino , Frequência do Gene , Humanos , Insetos Vetores/enzimologia , Insetos Vetores/genética , Larva , Malária/transmissão , Controle de Mosquitos , Mutação , Nitrilas/farmacologia
4.
Acta Trop ; 132 Suppl: S96-101, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291460

RESUMO

Population replacement/elimination strategies based on mass-release of sterile or otherwise genetically modified (male) mosquitoes are being considered in order to expand the malaria vector control arsenal on the way to eradication. A challenge in this context, is to produce male mosquitoes that will be able to compete and mate with wild females more efficiently than their wild counterparts, i.e. high fitness males. This study explored the effect of three larval food diets developed by the International Atomic Energy Agency on the overall fitness and mating performance of male Anopheles gambiae s.s. mosquitoes (Kisumu strain). Larval development (pupation and emergence rate, development time) was monitored, and adult wing length and energy reserves at emergence (i.e. lipids, sugars, glycogen and proteins) were measured. Male sexual performance was assessed through an insemination test whereby one male and 10 virgin females were maintained together in the same cage in order to record the number of inseminated females per 24h. Our results show that males reared on Diets 2 and 3 performed best during larval development. Males provided with treatment 2.2 had a shorter development time and performed best in insemination tests. However, these males had the lowest overall lifespan, suggesting a trade-off between longevity and sexual performances which needs to be taken into consideration when planning release. The results from this work were discussed in the context of sterile insect techniques or genetic control methods which is today one of the strategy in the overall mosquito control and elimination efforts.


Assuntos
Anopheles/fisiologia , Dieta/métodos , Comportamento Sexual Animal , Animais , Anopheles/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA